Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Anal Methods ; 16(16): 2489-2495, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38502566

RESUMO

Iron deficiency anemia (IDA) is a condition characterized by lower-than-average iron (Fe) levels in the body, affecting a substantial number of young children and pregnant women globally. Existing diagnostic methods for IDA rely on invasive analysis of stored Fe in ferritin from blood samples, posing challenges, especially for toddlers and young children. To address this issue, saliva has been proposed as a non-invasive sample matrix for IDA diagnosis. However, conventional Fe analysis techniques often necessitate complex and costly instrumentation. This study presents the first non-invasive, saliva-based preliminary screening test for IDA using a nitrocellulose lateral flow system. In this study, we introduce a novel approach using the ferroin reaction with bathophenanthroline (Bphen) and ferrous (Fe2+) ions to quantify Fe levels in saliva. Our methodology involves a capillary flow-driven microfluidic device integrated into a lateral flow system utilizing nitrocellulose membranes. Here, we present the first instance of saliva on a nitrocellulose substrate to detect salivary Fe levels. The optimized system yielded a linear response over the 1-200 ppm range in buffer solution, with a limit of detection (LoD) of 5.6 ppm. Furthermore, the system demonstrated a linear response in pooled saliva samples across the 1-1000 ppm range, with a LoD of 55.1 ppm. These results underscore the potential of our capillary flow-driven microfluidic device as a viable non-invasive diagnostic tool for IDA, particularly in remote and resource-limited settings.


Assuntos
Anemia Ferropriva , Ferro , Saliva , Humanos , Saliva/química , Anemia Ferropriva/diagnóstico , Ferro/análise , Feminino , Limite de Detecção , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Colódio/química , Dispositivos Lab-On-A-Chip
2.
Curr Top Med Chem ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38415434

RESUMO

An individual's therapeutic drug exposure level is directly linked to corresponding clinical effects. Rapid, sensitive, inexpensive, portable and reliable devices are needed for diagnosis related to drug exposure, treatment, and prognosis of diseases. Electrochemical sensors are useful for drug monitoring due to their high sensitivity and fast response time. Also, they can be combined with portable signal read-out devices for point-of-care applications. In recent years, nanomaterials such as carbon-based, carbon-metal nanocomposites, noble nanomaterials have been widely used to modify electrode surfaces due to their outstanding features including catalytic abilities, conductivity, chemical stability, biocompatibility for development of electrochemical sensors. This review paper presents the most recent advances about nanomaterials-based electrochemical sensors including the use of green assessment approach for detection of drugs including anticancer, antiviral, anti-inflammatory, and antibiotics covering the period from 2019 to 2023. The sensor characteristics such as analyte interactions, fabrication, sensitivity, and selectivity are also discussed. In addition, the current challenges and potential future directions of the field are highlighted.

3.
Analyst ; 147(20): 4517-4524, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36074753

RESUMO

Here, we developed a microfluidic paper device by combining ion-selective electrodes (ISE) and a distance-based paper device (dPAD) for simultaneous potentiometric and colorimetric detection of urine electrolytes including K+, Na+ and Cl-. The working and reference electrode zones were coated with polystyrene as a non-ionic polymer to improve hydrophobic properties on the paper surface for fabrication of K+-ISE and Na+-ISE. The layer of polymer coating was optimized to enhance the sensitivity of the ISEs. Under optimized conditions, the electrode surfaces were modified with carbon black to improve the electrochemical characteristics of the ISEs. The ISEs showed good performance with sensitivities of 54.14 ± 3.94 mV per decade and 55.08 ± 1.15 mV per decade for K+ and Na+ within the linear concentration range 0.100 mM-100 mM K+ and 5 mM-1 M Na+, respectively. The limits of detection (LOD) were 0.05 mM and 1.36 mM for K+ and Na+, respectively. The linear working range of Cl- was 0.50 to 50 mM and the LOD and limit of quantification (LOQ) were found to be 0.16 ± 0.05 mM (3SD) and 0.53 ± 0.05 mM (10SD), respectively. The dual-mode ISE-dPAD was validated in human urine and recoveries were obtained as 90-108%, 94-105%, and 90-96% for K+, Na+, and Cl-, respectively, showing successful application of the developed device in a complex matrix. The ISE-dPAD has advantages including low-cost ($ 0.33 per test), eco-friendly, portability, simple operation, the need of low sample volume (100 µL), and simultaneous analysis on a single device.


Assuntos
Eletrodos Seletivos de Íons , Dispositivos Lab-On-A-Chip , Eletrodos , Humanos , Íons , Polímeros/química , Poliestirenos , Sódio , Fuligem
4.
Talanta ; 237: 122983, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736703

RESUMO

This work presents an all-in-one origami paper-based electrochemical platform for simple and inexpensive l-cysteine (Cys) detection using Cys as a monomer for modifying electrode surfaces. The proposed method combines the steps of electropolymerization and detection into a single device to offer a highly convenient method for the end-user. In comparison, the sensitivity toward Cys detection is a significantly increased using this modified electrode. The developed device provided a linear concentration range of 10-800 µM with a limit of detection of 5.5 µM. For application, the device was successfully applied to detect Cys in different food products such as wheat flour, bread, and cake with satisfactory results, yielding excellent intra-day and inter-day relative standard deviations (1.5-4.9%) and recoveries (84.2-110.8%). This discovery is important from the viewpoint of the development of Cys detection in other applications in the future.


Assuntos
Cisteína , Farinha , Eletrodos , Limite de Detecção , Triticum
5.
J Pharm Sci ; 110(12): 3969-3972, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34619152

RESUMO

While asymmetrical flow field-flow fractionation (AF4) has been widely used for separation of high molecular weight species and even particles, its ability to resolve lower molecular weight species has rarely been explored. Over the course of many projects, we have discovered that AF4 can be an effective analytical method for separating peptides from oligomers and higher molecular weight aggregates. The methodology can be used even for peptides as small as 2 kD in molecular weight. Using multi-angle laser light scattering (MALLS) detection, accurate masses of the parent peptide can be obtained, provided accurate extinction coefficients are provided. It was shown that AF4 can be stability-indicating, suggesting that AF4-MALLS may be a suitable alternative to the use of SEC to monitor the aggregation of peptides.


Assuntos
Fracionamento por Campo e Fluxo , Peso Molecular , Peptídeos
6.
ACS Sens ; 6(8): 2998-3005, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34350757

RESUMO

α1-Acid glycoprotein (AGP) is a glycoprotein present in serum, which is associated with the modulation of the immune system in response to stress or injuries, and a biomarker for inflammatory diseases and cancers. Here, we propose a pump-free microfluidic device for the electrochemical determination of AGP. The microfluidic device utilizes capillary-driven flow and a passive mixing system to label the AGP with the Os (VI) complex (an electrochemical tag) inside the main channel, before delivering the products to the electrode surface. Furthermore, thanks to the resulting geometry, all the analytical steps can be carried out inside the device: labeling, washing, and detection by adsorptive transfer stripping square wave voltammetry. The microfluidic device exhibited a linear range from 500 to 2000 mg L-1 (R2 = 0.990) and adequate limit of detection (LOD = 231 mg L-1). Commercial serum samples were analyzed to demonstrate the success of the method, yielding recoveries around 83%. Due to its simplicity, low sample consumption, low cost, short analysis time, disposability, and portability, the proposed method can serve as a point-of-care/need testing device for AGP.


Assuntos
Dispositivos Lab-On-A-Chip , Orosomucoide , Eletrodos , Glicoproteínas , Microfluídica
7.
ACS Sens ; 6(8): 3047-3055, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34308636

RESUMO

The albumin-to-alkaline phosphatase ratio (AAPR) has been a cancer prognostic indicator. This paper presents the concept of a dual-color change distance-based paper device (dPAD) for albumin (Alb) and alkaline phosphatase (ALP) detection to evaluate this cancer prognostic index. Whereas Alb interacts with the bromocresol green (BCG) indicator to form a bluish-green complex, ALP hydrolyzes l-ascorbic acid-2-phosphate (AAP) to produce ascorbic acid (AA), which reacts with KIO3 to generate I2 and I-. I2/I- reacts with silver hexagonal nanoprisms (purple color) in the presence of Cu2+, resulting in a color change from purple to colorless. The distance of the color change from yellow to the bluish-green and purple to colorless correlates to Alb and ALP concentration, respectively. The angle index for the AAPR is then defined by drawing a straight line that connects the tops of the two changed band lengths in the detection area. The highest bluish-green color band length on the Alb region is the midpoint, which is the position set of the protractor at 0°, and the angle is measured using a simple protractor. The results indicate that an AAPR below 0.57 will have an angle greater than 40° and correlates with a risk factor for lung cancer. The naked-eye detection limits for Alb and ALP were found to be 0.8 g/L and 5 U/L (n = 10), respectively. The practical application of the developed dPAD was successfully demonstrated by Alb and ALP analysis in human serum and validated against standard methods. The proposed method does not require incubation conditions for the ALP assay, which strongly reduces the overall analysis steps and time. Moreover, our device provides a low-cost, simple, sensitive, selective, accurate, and precise determination of the AAPR.


Assuntos
Fosfatase Alcalina , Neoplasias Pulmonares , Albuminas , Humanos , Prata
8.
Talanta ; 221: 121553, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076109

RESUMO

Stencil-printing conductive carbon inks has revolutionized the development of inexpensive, disposable and portable electrochemical sensors. However, stencil-printed carbon electrodes (SPCEs) typically suffer from poor electrochemical properties. While many surface pretreatments and modifications have been tested to improve the electrochemical activity of SPCEs, the bulk composition of the inks used for printing has been largely ignored. Recent studies of other carbon composite electrode materials show significant evidence that the conductive carbon particle component is strongly related to electrochemical performance. However, such a study has not been carried out with SPCEs. In this work, we perform a systematic characterization of SPCEs made with different carbon particle types including graphite particles, glassy carbon microparticles and carbon black. The relationship between carbon particle characteristics including particle size, particle purity, and particle morphology as well as particle mass loading on the fabrication and electrochemical properties of SPCEs is studied. SPCEs were plasma treated for surface activation and the electrochemical properties of both untreated and plasma treated SPCEs are also compared. SPCEs displayed distinct analytical utilities characterized through solvent window and double layer capacitance. Cyclic voltammetry (CV) of several standard redox probes, FcTMA+, ferri/ferrocyanide, and pAP was used to establish the effects of carbon particle type and plasma treatment on electron transfer kinetics of SPCEs. CV of the biologically relevant molecules uric acid, NADH and dopamine was employed to further illustrate the differences in sensing and fouling characteristics of SPCEs fabricated with different carbon particle types. SEM imaging revealed significant differences in the SPCE surface microstructures. This systematic study demonstrates that the electrochemical properties of SPCEs can be tuned and significantly improved through careful selection of carbon particle type and plasma cleaning with a goal toward the development of better performing electrochemical point-of-need sensors.

9.
Anal Chem ; 93(3): 1304-1309, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33373524

RESUMO

Thermoplastic electrodes (TPEs) are carbon composite electrodes consisting of graphite and thermoplastic polymer binder. TPE production is a solvent-based method, which makes it easy to fabricate and pattern into complex geometries, contrary to classical carbon composite electrodes. Depending on the composition (carbon type, binder, and composition ratio), TPEs can give excellent electrochemical performance and high conductivity. However, these TPEs are relatively new electrode materials, and thorough electrochemical characterization is still missing to understand and predict why large differences between TPEs exist. We used scanning electrochemical microscopy (SECM) as a screening tool to characterize TPEs. SECM data treatment based on scanning probe microscopy imaging allows a fast and easy comparison of the numerous images, as well as the optimization of the preparation. Experiments suggest that TPEs behave as a network of interacting microelectrodes made by electrochemically active islands isolated between less active areas. Higher carbon content in TPEs is not always indicative of more uniform electrodes with better electrochemical performances. Using various SECM redox probes, it is possible to select a specific graphite or polymer type for the analyte of interest. For example, TPEs made with COC:3569 are the best compromise for general detection, whereas PMMA:11 µm is better suited for catechol-like polyphenol analysis.

10.
Anal Chim Acta ; 1103: 58-66, 2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32081189

RESUMO

Cadmium (Cd) and lead (Pb) pollution is a significant environmental and human health concern, and methods to detect Cd and Pb on site are valuable. Stencil-printed carbon electrodes (SPCEs) are an attractive electrode material for point-of-care (POC) applications due to their low cost, ease of fabrication, disposability and portability. At present, SPCEs are exclusively formulated from graphitic carbon powder and conductive carbon ink. However, graphitic carbon SPCEs are not ideal for heavy metal sensing due to the heterogeneity of graphitic SPCE surfaces. Moreover, SPCEs typically require extensive modification to provide desirable detection limits and sensitivity at the POC, significantly increasing cost and complexity of analysis. While there are many examples of chemically modified SPCEs, the bulk SPCE composition has not been studied for heavy metal detection. Here, a glassy carbon microparticle stencil printed electrode (GC-SPE) was developed. The GC-SPEs were first characterized with SEM and cyclic voltammetry and then optimized for Cd and Pb detection with an in situ Bi-film plated. The GC-SPEs require no chemical modification or pretreatment significantly decreasing the cost and complexity of fabrication. The detection limits for Cd and Pb were estimated to be 0.46 µg L-1 and 0.55 µg L-1, respectively, which are below EPA limits for drinking water (5 µg L-1 Cd and 10 µg L-1 Pb) [1]. The reported GC-SPEs are advantageous with their low cost, ease of fabrication and use, and attractive performance. The GC-SPEs can be used for low-level metal detection at the POC as shown in the report herein.

11.
Anal Chim Acta ; 1100: 156-162, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987136

RESUMO

Herein we report the first two distance-based microfluidic paper-based analytical devices (µPADs) using fluorescence to quantify aluminum. In addition to their read-by-eye quantification, the devices are simple to fabricate, require no sample pretreatment or preconcentration, and have a shelf life of >5 months. The first device is designed in a "chemometer" format where the length of a fluorescent band linearly responds to an Al(III) concentration. The second device uses a radial design where the fluorescent diameter also linearly responds to an Al(III) concentration. The chemometer device has a detection limit of 2.5 ppm (100 µM) and a linear range from 2 to 54 ppm Al(III) (100 µM-1 mM), R2 = 0.989). The radial device has a detection limit of 0.9 ppm (33 µM) and a linear range from 2 to 24 ppm Al(III) (100-900 µM, R2 = 0.968). The utility of the µPADs were successfully demonstrated by measuring Al(III) in two water effluent samples from the Gold King Mine near Silverton, CO.

12.
Biosens Bioelectron ; 131: 46-52, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822687

RESUMO

Detection of viral infection is commonly performed using serological techniques like the enzyme-linked immunosorbent assay (ELISA) to detect antibody responses. Such assays may also be used to determine the infection phase based on isotype prevalence. However, ELISAs demonstrate limited sensitivity and are difficult to perform at the point of care. Here, we present a novel technique for label-free, rapid detection of ultra-low concentrations of virus specific antibodies. We have developed a simple, robust capacitive biosensor using microwires coated with Zika or Chikungunya virus envelope antigen. With little discernable nonspecific binding, the sensor can detect as few as 10 antibody molecules in a small volume (10 molecules/30 µL) within minutes. It can also be used to rapidly, specifically, and accurately determine the isotype of antigen-specific antibodies. Finally, we demonstrate that anti-Zika virus antibody can be sensitively and specifically detected in dilute mouse serum and can be isotyped using the sensor. Overall, our findings suggest that our microwire sensor platform has the potential to be used as a reliable, sensitive, and inexpensive diagnostic tool to detect immune responses at the point of care.


Assuntos
Anticorpos Antivirais/isolamento & purificação , Técnicas Biossensoriais , Infecção por Zika virus/diagnóstico , Zika virus/isolamento & purificação , Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Proteínas do Envelope Viral/sangue , Proteínas do Envelope Viral/isolamento & purificação , Zika virus/patogenicidade , Infecção por Zika virus/virologia
13.
Theranostics ; 8(14): 3797-3807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083260

RESUMO

Rationale: Saliva as a sample matrix is rapidly gaining interest for disease diagnosis and point-of-care assays because it is easy to collect (non-invasive) and contains many health-related biomarkers. However, saliva poses particular problems relative to more common urine and blood matrices, which includes low analyte concentrations, lack of understanding of biomolecule transportation and inherent viscosity variability in human samples. While several studies have sought to improve assay sensitivity, few have addressed sample viscosity specifically. The goal of this study is to minimize the effect of sample viscosity on paper-based analytical devices (PADs) for the measurement of pH and nitrite in human saliva. Methods: PADs were used to measure salivary pH from 5.0 to 10.0 with a universal indicator consisting of chlorophenol red, phenol red and phenolphthalein. Nitrite determination was performed using the Griess reaction. Artificial saliva with viscosity values between 1.54 and 5.10 mPa∙s was tested on the proposed PAD. To ensure the proposed PADs can be tailored for use in-field analysis, the devices were shipped to Australia and tested with human specimens. Results: Initial experiments showed that viscosity had a significant impact on the calibration curve for nitrite; however, a more consistent curve could be generated when buffer was added after the sample, irrespective of sample viscosity. The linear range for nitrite detection was 0.1 to 2.4 mg/dL using the improved method. The nitrite measurement in artificial saliva also showed a good correlation with the standard spectrophotometry method (p=0.8484, paired sample t-test, n=20). Measured pH values from samples with varying viscosities correlated well with the results from our pH meter. Conclusions: The inherent variation of salivary viscosity that impacts nitrite and pH results can be addressed using a simple washing step on the PAD without the need for complex procedures.


Assuntos
Técnicas de Química Analítica/instrumentação , Nitritos/análise , Papel , Saliva/química , Manejo de Espécimes/métodos , Viscosidade , Austrália , Humanos , Concentração de Íons de Hidrogênio , Sensibilidade e Especificidade
14.
J Pharm Biomed Anal ; 156: 323-327, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29747122

RESUMO

Deamidation of asparagine (Asn) residues is one of the most common chemical degradation pathways observed in proteins. This reaction must be understood and controlled in therapeutic drug candidates, as chemical changes can affect their efficacy and safety. The analytical tools available for detection of deamidation reaction products, such as isoaspartic acid residues, are either chromatographic or electrophoretic, and require MS detection for absolute identification of peaks. High-throughput measurement of protein degradation has typically been limited to probing the target's physical state using spectroscopic techniques. Here, we describe a high throughput assay for isoaspartate residues using fluorescent detection in a microtiter plate format. The method allows for fast detection of protein deamidation in a cost-efficient manner. The method can be employed even if the target peptide or protein contains free Cys residues. The technique appears to be selective, linear, and accurate.


Assuntos
Adenosil-Homocisteinase/química , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala/métodos , Amidas/metabolismo , Sequência de Aminoácidos , Asparagina/química , Asparagina/metabolismo , Ensaios Enzimáticos/economia , Ensaios Enzimáticos/instrumentação , Ensaios Enzimáticos/métodos , Glucagon/química , Ensaios de Triagem em Larga Escala/economia , Ensaios de Triagem em Larga Escala/instrumentação , Concentração de Íons de Hidrogênio , Proteólise , Sensibilidade e Especificidade , Cloreto de Sódio/química
15.
Anal Sci ; 34(1): 97-102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29321466

RESUMO

This work reports a portable distance-based detection paper device that has a thermometer-like shape for rapid, instrument-free determination of antioxidant activity using a nanoceria assay. The assay is based on partial reduction of cerium ion from Ce4+ to Ce3+ on nanoceria deposited along the detection channel by antioxidants present in food, giving highly reactive oxidation products. Either these products or the parent antioxidant compounds could then bind to the OH-rich ceria nanoparticles and generate charge transfer ceria-antioxidant complexes resulting in a yellow to brown color change. The distance of the brown color on the detection channel is directly proportional to antioxidant activity, and can be easily measured using an integrated ruler without the need of any external sophisticated instrument for detection. The paper sensor has been studied for the analysis of common antioxidants and its performance was validated against traditional antioxidant assays for 11 tea sample analyses. Using the Spearman rank correlation coefficient method, the antioxidant activity of tea samples obtained from the paper device correlated with the traditional assay at the 95% confidence level. The developed sensor provided a high recovery and tolerance limit and was stable for 50 days both when stored at ambient and low temperature (6 and -20°C). The results demonstrated that the developed paper device is an alternative to allow for fast, simple, instrument-free, cheap, portable and high-throughput screening of antioxidant activity analysis in real samples.

16.
Anal Chim Acta ; 981: 24-33, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28693726

RESUMO

In this work, we report a simple and yet efficient stencil-printed electrochemical platform that can be integrated into the caps of sample containers and thus, allows in-field quantification of Cd(II) and Pb(II) in river water samples. The device exploits the low-cost features of carbon (as electrode material) and paper/polyester transparency sheets (as substrate). Electrochemical analysis of the working electrodes prepared on different substrates (polyester transparency sheets, chromatographic, tracing and office papers) with hexaammineruthenium(III) showed that their electroactive area and electron transfer kinetics are highly affected by the porosity of the material. Electrodes prepared on transparency substrates showed the best electroanalytical performance for the simultaneous determination of Cd(II) and Pb(II) by square-wave anodic stripping voltammetry. Interestingly, the temperature and time at which the carbon ink was cured had significant effect on the electrochemical response, especially the capacitive current. The amount of Cd and Pb on the electrode surface can be increased about 20% by in situ electrodeposition of bismuth. The electrochemical platform showed a linear range comprised between 1 and 200 µg/L for both metals, sensitivity of analysis of 0.22 and 0.087 µA/ppb and limits of detection of 0.2 and 0.3 µg/L for Cd(II) and Pb(II), respectively. The analysis of river water samples was done directly in the container where the sample was collected, which simplifies the procedure and approaches field analysis. The developed point-of-need detection system allowed simultaneous determination of Cd(II) and Pb(II) in those samples using the standard addition method with precise and accurate results.

17.
Anal Chem ; 89(10): 5428-5435, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28394582

RESUMO

The development of simple fluorescent and colorimetric assays that enable point-of-care DNA and RNA detection has been a topic of significant research because of the utility of such assays in resource limited settings. The most common motifs utilize hybridization to a complementary detection strand coupled with a sensitive reporter molecule. Here, a paper-based colorimetric assay for DNA detection based on pyrrolidinyl peptide nucleic acid (acpcPNA)-induced nanoparticle aggregation is reported as an alternative to traditional colorimetric approaches. PNA probes are an attractive alternative to DNA and RNA probes because they are chemically and biologically stable, easily synthesized, and hybridize efficiently with the complementary DNA strands. The acpcPNA probe contains a single positive charge from the lysine at C-terminus and causes aggregation of citrate anion-stabilized silver nanoparticles (AgNPs) in the absence of complementary DNA. In the presence of target DNA, formation of the anionic DNA-acpcPNA duplex results in dispersion of the AgNPs as a result of electrostatic repulsion, giving rise to a detectable color change. Factors affecting the sensitivity and selectivity of this assay were investigated, including ionic strength, AgNP concentration, PNA concentration, and DNA strand mismatches. The method was used for screening of synthetic Middle East respiratory syndrome coronavirus (MERS-CoV), Mycobacterium tuberculosis (MTB), and human papillomavirus (HPV) DNA based on a colorimetric paper-based analytical device developed using the aforementioned principle. The oligonucleotide targets were detected by measuring the color change of AgNPs, giving detection limits of 1.53 (MERS-CoV), 1.27 (MTB), and 1.03 nM (HPV). The acpcPNA probe exhibited high selectivity for the complementary oligonucleotides over single-base-mismatch, two-base-mismatch, and noncomplementary DNA targets. The proposed paper-based colorimetric DNA sensor has potential to be an alternative approach for simple, rapid, sensitive, and selective DNA detection.


Assuntos
Colorimetria/métodos , DNA/análise , Nanopartículas Metálicas/química , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Mycobacterium tuberculosis/genética , Papel , Papillomaviridae/genética , Ácidos Nucleicos Peptídicos/química , Sequência de Bases , DNA Bacteriano/análise , DNA Viral/análise , Humanos , Processamento de Imagem Assistida por Computador , Limite de Detecção , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Prata/química
18.
Anal Chem ; 89(6): 3613-3621, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28225595

RESUMO

The development of transparency-based electrochemical and paper-based colorimetric analytic detection platforms is presented as complementary methods for food and waterborne bacteria detection from a single assay. Escherichia coli and Enterococcus species, both indicators of fecal contamination, were detected using substrates specific to enzymes produced by each species. ß-galactosidase (ß-gal) and ß-glucuronidase (ß-glucur) are both produced by E. coli, while ß-glucosidase (ß-gluco) is produced by Enterococcus spp. Substrates used produced either p-nitrophenol (PNP), o-nitrophenol (ONP), or p-aminophenol (PAP) as products. Electrochemical detection using stencil-printed carbon electrodes (SPCEs) was found to provide optimal performance on inexpensive and disposable transparency film platforms. Using SPCEs, detection limits for electrochemically active substrates, PNP, ONP, and PAP were determined to be 1.1, 2.8, and 0.5 µM, respectively. A colorimetric paper-based well plate system was developed from a simple cardboard box and smart phone for the detection of PNP and ONP. Colorimetric detection limits were determined to be 81 µM and 119 µM for ONP and PNP respectively. While colorimetric detection methods gave higher detection limits than electrochemical detection, both methods provided similar times to positive bacteria detection. Low concentrations (101 CFU/mL) of pathogenic and nonpathogenic E. coli isolates and (100 CFU/mL) E. faecalis and E. faecium strains were detected within 4 and 8 h of pre-enrichment. Alfalfa sprout and lagoon water samples served as model food and water samples, and while water samples did not test positive, sprout samples did test positive within 4 h of pre-enrichment. Positive detection of inoculated (2.3 × 102 and 3.1 × 101 CFU/mL or g of E. coli and E. faecium, respectively) sprout and water samples tested positive within 4 and 12 h of pre-enrichment, respectively.


Assuntos
Colorimetria , Técnicas Eletroquímicas , Enterococcus/isolamento & purificação , Escherichia coli/isolamento & purificação , Papel , Impressão , Carbono/química , Eletrodos , Enterococcus/metabolismo , Escherichia coli/metabolismo , Glucuronidase/metabolismo , Microbiologia da Água , beta-Galactosidase/metabolismo , beta-Glucosidase/metabolismo
19.
Anal Chim Acta ; 952: 32-40, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28010840

RESUMO

A novel paper-based electrochemical biosensor was developed using an anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe (AQ-PNA) and graphene-polyaniline (G-PANI) modified electrode to detect human papillomavirus (HPV). An inkjet printing technique was employed to prepare the paper-based G-PANI-modified working electrode. The AQ-PNA probe baring a negatively charged amino acid at the N-terminus was immobilized onto the electrode surface through electrostatic attraction. Electrochemical impedance spectroscopy (EIS) was used to verify the AQ-PNA immobilization. The paper-based electrochemical DNA biosensor was used to detect a synthetic 14-base oligonucleotide target with a sequence corresponding to human papillomavirus (HPV) type 16 DNA by measuring the electrochemical signal response of the AQ label using square-wave voltammetry before and after hybridization. It was determined that the current signal significantly decreased after the addition of target DNA. This phenomenon is explained by the rigidity of PNA-DNA duplexes, which obstructs the accessibility of electron transfer from the AQ label to the electrode surface. Under optimal conditions, the detection limit of HPV type 16 DNA was found to be 2.3 nM with a linear range of 10-200 nM. The performance of this biosensor on real DNA samples was tested with the detection of PCR-amplified DNA samples from the SiHa cell line. The new method employs an inexpensive and disposable device, which easily incinerated after use and is promising for the screening and monitoring of the amount of HPV-DNA type 16 to identify the primary stages of cervical cancer.


Assuntos
Técnicas Biossensoriais , DNA Viral/isolamento & purificação , Papillomavirus Humano 16/isolamento & purificação , Ácidos Nucleicos Peptídicos/química , Linhagem Celular Tumoral , Técnicas Eletroquímicas , Eletrodos , Humanos , Hibridização de Ácido Nucleico
20.
J Electroanal Chem (Lausanne) ; 805: 75-82, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29399008

RESUMO

A low-cost electrochemical sensor with Nafion/Bi modification using adsorptive stripping voltammetry for Co and Ni determination in airborne particulate matter and welding fume samples is described. Carbon stencil-printed electrodes (CSPEs) manufactured on low-cost PET films were utilized. Dimethylglyoxime (DMG) was used as a Co(II) and Ni(II) chelator with selective chemical precipitation for trace electrochemical analysis. Electrochemical studies of the Nafion/Bi-modified CSPE indicated a diffusion-controlled redox reaction for Co and Ni measurements. The Nafion coating decreased the background current and enhanced the measured peak current. Repeatability tests based on changes in percent relative standard deviation (RSD) of peak current showed the electrode could be used at least 15 times before the RSD exceeded 15% (the reported value of acceptable repeatability from Association of Official Analytical Chemists (AOAC)) due to deterioration of electrode surface. Limits of detection were 1 µg L-1 and 5 µg L-1 for Co and Ni, respectively, which were comparable to electrochemical sensors requiring more complicated modification procedures. The sensor produced a working range of 1-250 and 5-175 µg L-1 for Co and Ni, respectively. Interference studies showed no other metal species interfered with Co and Ni measurements using the optimized conditions. Finally, the developed sensors were applied for Co and Ni determination in aerosol samples generated from Co rods and a certified welding-fume reference material, respectively. Validation with ICP-MS showed no statistically different results with 95% confidence between sensor and the ICP methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA