Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(24): 12394-12406, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832461

RESUMO

Due to their distinct and tailorable internal cavity structures, zeolites serve as promising materials for efficient and specific gas separations such as the separation of /CO2 from N2. A subset of zeolite materials exhibits trapdoor behavior which can be exploited for particularly challenging separations, such as the separation of hydrogen, deuterium, and tritium for the nuclear industry. This study systematically delves into the influence of the chabazite (CHA) and merlinoite (MER) zeolite frameworks combined with different door-keeping cations (K+, Rb+, and Cs+) on the trapdoor separation behavior under a variety of thermal and gas conditions. Both CHA and MER frameworks were synthesized from the same parent Y-zeolite and studied using in situ X-ray diffraction as a function of increasing temperatures under 1 bar H2 exposures. This resulted in distinct thermal responses, with merlinoite zeolites exhibiting expansion and chabazite zeolites showing contraction of the crystal structure. Simultaneous thermal analysis (STA) and gas sorption techniques further demonstrated how the size of trapdoor cations restricts access to the internal porosities of the zeolite frameworks. These findings highlight that both the zeolite frameworks and the associated trapdoor cations dictate the thermal response and gas sorption behavior. Frameworks determine the crystalline geometry, the maximum porosities, and displacement of the cation in gas sorption, while associated cations directly affect the blockage of the functional sites and the thermal behavior of the frameworks. This work contributes new insights into the efficient design of zeolites for gas separation applications and highlights the significant role of the trapdoor mechanism.

2.
Phys Chem Chem Phys ; 16(40): 22116-21, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25209023

RESUMO

An exact description of the interactions in aromatic carbon systems is a key condition for the design of carbon based nanomaterials. In this paper we investigate the binding and adsorbate structure of the simplest prototype system in this class - the single aromatic ring molecule benzene on graphite. We have collected neutron diffraction data of the ordered phase of deuterated benzene, C6D6, adsorbed on the graphite (0001) basal plane surface. We examined relative coverages from 0.15 up to 1.3 monolayers (ML) in a temperature range of 80 to 250 K. The results confirm the flat lying commensurate (√7 × âˆš7)R19.1° monolayer with lattice constants a = b = 6.5 Å at coverages of less than 1 ML. For this structure we observe a progressive melting well below the desorption temperature. At higher coverages we do neither observe an ordered second layer nor a densification of the structure by upright tilting of first layer molecules, as generally assumed up to now. Instead, we see the formation of clusters with a bulk crystalline structure for coverages only weakly exceeding 1 ML.

3.
Chem Commun (Camb) ; (18): 2556-8, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19532888

RESUMO

For the first time, the chemistry in H(2) gas of a perovskite-like material, Pr(2)Sr(2)CrNiO(8), has been monitored at temperatures up to approximately 700 degrees C, in situ, by neutron powder diffraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA