Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 16(1): 73, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848907

RESUMO

Calcium ions (Ca2+) play pivotal roles in regulating diverse brain functions, including cognition, emotion, locomotion, and learning and memory. These functions are intricately regulated by a variety of Ca2+-dependent cellular processes, encompassing synaptic plasticity, neuro/gliotransmitter release, and gene expression. In our previous work, we developed 'monster OptoSTIM1' (monSTIM1), an improved OptoSTIM1 that selectively activates Ca2+-release-activated Ca2+ (CRAC) channels in the plasma membrane through blue light, allowing precise control over intracellular Ca2+ signaling and specific brain functions. However, the large size of the coding sequence of monSTIM1 poses a limitation for its widespread use, as it exceeds the packaging capacity of adeno-associated virus (AAV). To address this constraint, we have introduced monSTIM1 variants with reduced coding sequence sizes and established AAV-based systems for expressing them in neurons and glial cells in the mouse brain. Upon expression by AAVs, these monSTIM1 variants significantly increased the expression levels of cFos in neurons and astrocytes in the hippocampal CA1 region following non-invasive light illumination. The use of monSTIM1 variants offers a promising avenue for investigating the spatiotemporal roles of Ca2+-mediated cellular activities in various brain functions. Furthermore, this toolkit holds potential as a therapeutic strategy for addressing brain disorders associated with aberrant Ca2+ signaling.


Assuntos
Canais de Cálcio , Dependovirus , Camundongos , Animais , Dependovirus/metabolismo , Optogenética , Região CA1 Hipocampal/metabolismo , Aprendizagem , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia
2.
Mol Brain ; 16(1): 56, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403137

RESUMO

RET (REarranged during Transfection) is a receptor tyrosine kinase that transduces various external stimuli into biological functions, such as survival and differentiation, in neurons. In the current study, we developed an optogenetic tool for modulating RET signaling, termed optoRET, combining the cytosolic region of human RET with a blue-light-inducible homo-oligomerizing protein. By varying the duration of photoactivation, we were able to dynamically modulate RET signaling. Activation of optoRET recruited Grb2 (growth factor receptor-bound protein 2) and stimulated AKT and ERK (extracellular signal-regulated kinase) in cultured neurons, evoking robust and efficient ERK activation. By locally activating the distal part of the neuron, we were able to retrogradely transduce the AKT and ERK signal to the soma and trigger formation of filopodia-like F-actin structures at stimulated regions through Cdc42 (cell division control 42) activation. Importantly, we successfully modulated RET signaling in dopaminergic neurons of the substantia nigra in the mouse brain. Collectively, optoRET has the potential to be developed as a future therapeutic intervention, modulating RET downstream signaling with light.


Assuntos
Optogenética , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Humanos , Pseudópodes/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Axônios/metabolismo
3.
Nat Cell Biol ; 23(12): 1329-1337, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34876684

RESUMO

Simultaneous imaging of various facets of intact biological systems across multiple spatiotemporal scales is a long-standing goal in biology and medicine, for which progress is hindered by limits of conventional imaging modalities. Here we propose using the refractive index (RI), an intrinsic quantity governing light-matter interaction, as a means for such measurement. We show that major endogenous subcellular structures, which are conventionally accessed via exogenous fluorescence labelling, are encoded in three-dimensional (3D) RI tomograms. We decode this information in a data-driven manner, with a deep learning-based model that infers multiple 3D fluorescence tomograms from RI measurements of the corresponding subcellular targets, thereby achieving multiplexed microtomography. This approach, called RI2FL for refractive index to fluorescence, inherits the advantages of both high-specificity fluorescence imaging and label-free RI imaging. Importantly, full 3D modelling of absolute and unbiased RI improves generalization, such that the approach is applicable to a broad range of new samples without retraining to facilitate immediate applicability. The performance, reliability and scalability of this technology are extensively characterized, and its various applications within single-cell profiling at unprecedented scales (which can generate new experimentally testable hypotheses) are demonstrated.


Assuntos
Aprendizado Profundo , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Análise de Célula Única/métodos , Frações Subcelulares/metabolismo , Células 3T3 , Actinas/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Imagem Óptica/métodos , Refratometria
4.
Nat Commun ; 12(1): 5631, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561453

RESUMO

Insulin/IGF-1 signaling (IIS) regulates various physiological aspects in numerous species. In Caenorhabditis elegans, mutations in the daf-2/insulin/IGF-1 receptor dramatically increase lifespan and immunity, but generally impair motility, growth, and reproduction. Whether these pleiotropic effects can be dissociated at a specific step in insulin/IGF-1 signaling pathway remains unknown. Through performing a mutagenesis screen, we identified a missense mutation daf-18(yh1) that alters a cysteine to tyrosine in DAF-18/PTEN phosphatase, which maintained the long lifespan and enhanced immunity, while improving the reduced motility in adult daf-2 mutants. We showed that the daf-18(yh1) mutation decreased the lipid phosphatase activity of DAF-18/PTEN, while retaining a partial protein tyrosine phosphatase activity. We found that daf-18(yh1) maintained the partial activity of DAF-16/FOXO but restricted the detrimental upregulation of SKN-1/NRF2, contributing to beneficial physiological traits in daf-2 mutants. Our work provides important insights into how one evolutionarily conserved component, PTEN, can coordinate animal health and longevity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Longevidade/genética , Mutação , PTEN Fosfo-Hidrolase/genética , Receptor IGF Tipo 1/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Aptidão Genética/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos , PTEN Fosfo-Hidrolase/metabolismo , RNA-Seq/métodos , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
5.
Commun Biol ; 4(1): 548, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972668

RESUMO

Mitochondrial function and innate immunity are intimately linked; however, the mechanisms how mitochondrion-shaping proteins regulate innate host defense remains largely unknown. Herein we show that mitofusin-2 (MFN2), a mitochondrial fusion protein, promotes innate host defense through the maintenance of aerobic glycolysis and xenophagy via hypoxia-inducible factor (HIF)-1α during intracellular bacterial infection. Myeloid-specific MFN2 deficiency in mice impaired the antimicrobial and inflammatory responses against mycobacterial and listerial infection. Mechanistically, MFN2 was required for the enhancement of inflammatory signaling through optimal induction of aerobic glycolysis via HIF-1α, which is activated by mitochondrial respiratory chain complex I and reactive oxygen species, in macrophages. MFN2 did not impact mitophagy during infection; however, it promoted xenophagy activation through HIF-1α. In addition, MFN2 interacted with the late endosomal protein Rab7, to facilitate xenophagy during mycobacterial infection. Our findings reveal the mechanistic regulations by which MFN2 tailors the innate host defense through coordinated control of immunometabolism and xenophagy via HIF-1α during bacterial infection.


Assuntos
Infecções Bacterianas/imunologia , GTP Fosfo-Hidrolases/fisiologia , Glicólise , Imunidade Inata/imunologia , Macroautofagia , Macrófagos/imunologia , Mitocôndrias/imunologia , Animais , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
6.
Mol Psychiatry ; 26(10): 5542-5556, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33452442

RESUMO

Proteinopathy in neurodegenerative diseases is typically characterized by deteriorating activity of specific protein aggregates. In tauopathies, including Alzheimer's disease (AD), tau protein abnormally accumulates and induces dysfunction of the affected neurons. Despite active identification of tau modifications responsible for tau aggregation, a critical modulator inducing tau proteinopathy by affecting its protein degradation flux is not known. Here, we report that anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase, is crucial for the tau-mediated AD pathology. ALK caused abnormal accumulation of highly phosphorylated tau in the somatodendritic region of neurons through its tyrosine kinase activity. ALK-induced LC3-positive axon swelling and loss of spine density, leading to tau-dependent neuronal degeneration. Notably, ALK activation in neurons impaired Stx17-dependent autophagosome maturation and this defect was reversed by a dominant-negative Grb2. In a Drosophila melanogaster model, transgenic flies neuronally expressing active Drosophila Alk exhibited the aggravated tau rough eye phenotype with retinal degeneration and shortened lifespan. In contrast, expression of kinase-dead Alk blocked these phenotypes. Consistent with the previous RNAseq analysis showing upregulation of ALK expression in AD [1], ALK levels were significantly elevated in the brains of AD patients showing autophagosomal defects. Injection of an ALK.Fc-lentivirus exacerbated memory impairment in 3xTg-AD mice. Conversely, pharmacologic inhibition of ALK activity with inhibitors reversed the memory impairment and tau accumulation in both 3xTg-AD and tauC3 (caspase-cleaved tau) transgenic mice. Together, we propose that aberrantly activated ALK is a bona fide mediator of tau proteinopathy that disrupts autophagosome maturation and causes tau accumulation and aggregation, leading to neuronal dysfunction in AD.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/genética , Quinase do Linfoma Anaplásico/genética , Animais , Drosophila melanogaster , Humanos , Camundongos , Camundongos Transgênicos , Tauopatias/genética , Proteínas tau/genética
7.
Elife ; 92020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32267234

RESUMO

Human epidermal growth factor receptors (HERs) are the primary targets of many directed cancer therapies. However, the reason a specific dimer of HERs generates a stronger proliferative signal than other permutations remains unclear. Here, we used single-molecule immunoprecipitation to develop a biochemical assay for endogenously-formed, entire HER2-HER3 heterodimers. We observed unexpected, large conformational fluctuations in juxta-membrane and kinase domains of the HER2-HER3 heterodimer. Nevertheless, the individual HER2-HER3 heterodimers catalyze tyrosine phosphorylation at an unusually high rate, while simultaneously interacting with multiple copies of downstream signaling effectors. Our results suggest that the high catalytic rate and multi-tasking capability make a concerted contribution to the strong signaling potency of the HER2-HER3 heterodimers.


Assuntos
Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Receptor ErbB-3/química , Receptor ErbB-3/metabolismo , Transdução de Sinais , Dimerização , Células HEK293 , Humanos , Modelos Moleculares , Fosforilação , Conformação Proteica , Domínios Proteicos , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Imagem Individual de Molécula , Tirosina/metabolismo
8.
Neuroendocrinology ; 110(11-12): 1010-1027, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31935735

RESUMO

INTRODUCTION: Synchronous and pulsatile neural activation of kisspeptin neurons in the arcuate nucleus (ARN) are important components of the gonadotropin-releasing hormone pulse generator, the final common pathway for central regulation of mammalian reproduction. However, whether ARN kisspeptin neurons can intrinsically generate self-sustained synchronous oscillations from the early neonatal period and how they are regulated remain unclear. OBJECTIVE: This study aimed to examine the endogenous rhythmicity of ARN kisspeptin neurons and its neural regulation using a neonatal organotypic slice culture model. METHODS: We monitored calcium (Ca2+) dynamics in real-time from individual ARN kisspeptin neurons in neonatal organotypic explant cultures of Kiss1-IRES-Cre mice transduced with genetically encoded Ca2+ indicators. Pharmacological approaches were employed to determine the regulations of kisspeptin neuron-specific Ca2+ oscillations. A chemogenetic approach was utilized to assess the contribution of ARN kisspeptin neurons to the population dynamics. RESULTS: ARN kisspeptin neurons in neonatal organotypic cultures exhibited a robust synchronized Ca2+ oscillation with a period of approximately 3 min. Kisspeptin neuron-specific Ca2+ oscillations were dependent on voltage-gated sodium channels and regulated by endoplasmic reticulum-dependent Ca2+ homeostasis. Chemogenetic inhibition of kisspeptin neurons abolished synchronous Ca2+ oscillations, but the autocrine actions of the neuropeptides were marginally effective. Finally, neonatal ARN kisspeptin neurons were regulated by N-methyl-D-aspartate and gamma-aminobutyric acid receptor-mediated neurotransmission. CONCLUSION: These data demonstrate that ARN kisspeptin neurons in organotypic cultures can generate synchronized and self-sustained Ca2+ oscillations. These oscillations controlled by multiple regulators within the ARN are a novel ultradian rhythm generator that is active during the early neonatal period.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Sinalização do Cálcio/fisiologia , Kisspeptinas , Neurônios/fisiologia , Ritmo Ultradiano/fisiologia , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Transgênicos
9.
Biochem Biophys Res Commun ; 523(2): 473-480, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31882118

RESUMO

The inducible activation system is valuable for investigating spatiotemporal roles of molecules. A chemically inducible activation system for Fas (CD95/APO-1), which works efficiently to induce apoptosis and leads non-apoptotic pathways, has not yet been developed. Here, we engineered a rapamycin-induced dimerization system of Fas consisting of FKBP and FRB proteins. Treatment of rapamycin specifically induces cellular apoptosis. In neurons and cells with high c-FLIP expression, rapamycin-induced Fas activation triggered the activation of the non-apoptotic pathway components instead of cell death. Intracranial delivery of the system could be utilized to induce apoptosis of tumor cells upon rapamycin treatment. Our results demonstrate a novel inducible Fas activation system which operates with high efficiency and temporal precision in vitro and in vivo promising a potential therapeutic strategy.


Assuntos
Engenharia de Proteínas/métodos , Sirolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Receptor fas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Gravidez , Ratos Sprague-Dawley , Proteína 1A de Ligação a Tacrolimo/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor fas/genética
10.
Cell Chem Biol ; 26(12): 1652-1663.e4, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31678045

RESUMO

Actin waves are filamentous actin (F-actin)-rich structures that initiate in the somato-neuritic area and move toward neurite ends. The upstream cues that initiate actin waves are poorly understood. Here, using an optogenetic approach (Opto-cytTrkB), we found that local activation of the TrkB receptor around the neurite end initiates actin waves and triggers neurite elongation. During actin wave generation, locally activated TrkB signaling in the distal neurite was functionally connected with preferentially localized Rac1 and its signaling pathways in the proximal region. Moreover, TrkB activity changed the location of ankyrinG--the master organizer of the axonal initial segment-and initiated the stimulated neurite to acquire axonal characteristics. Taken together, these findings suggest that local Opto-cytTrkB activation switches the fate from minor to major axonal neurite during neuronal polarization by generating actin waves.


Assuntos
Actinas/metabolismo , Receptor trkB/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Feminino , Luz , Neuritos/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Optogenética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
11.
Nat Med ; 24(11): 1662-1668, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30224756

RESUMO

Pediatric brain tumors are highly associated with epileptic seizures1. However, their epileptogenic mechanisms remain unclear. Here, we show that the oncogenic BRAF somatic mutation p.Val600Glu (V600E) in developing neurons underlies intrinsic epileptogenicity in ganglioglioma, one of the leading causes of intractable epilepsy2. To do so, we developed a mouse model harboring the BRAFV600E somatic mutation during early brain development to reflect the most frequent mutation, as well as the origin and timing thereof. Therein, the BRAFV600E mutation arising in progenitor cells during brain development led to the acquisition of intrinsic epileptogenic properties in neuronal lineage cells, whereas tumorigenic properties were attributed to high proliferation of glial lineage cells. RNA sequencing analysis of patient brain tissues with the mutation revealed that BRAFV600E-induced epileptogenesis is mediated by RE1-silencing transcription factor (REST), which is a regulator of ion channels and neurotransmitter receptors associated with epilepsy. Moreover, we found that seizures in mice were significantly alleviated by an FDA-approved BRAFV600E inhibitor, vemurafenib, as well as various genetic inhibitions of Rest. Accordingly, this study provides direct evidence of a BRAF somatic mutation contributing to the intrinsic epileptogenicity in pediatric brain tumors and suggests that BRAF and REST could be treatment targets for intractable epilepsy.


Assuntos
Neoplasias Encefálicas/genética , Ganglioglioma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Repressoras/genética , Convulsões/genética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Criança , Modelos Animais de Doenças , Ganglioglioma/complicações , Ganglioglioma/diagnóstico por imagem , Ganglioglioma/fisiopatologia , Humanos , Camundongos , Mutação , Pediatria , Convulsões/complicações , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia
12.
Cell Microbiol ; 20(10): e12938, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30010242

RESUMO

Salmonella uses Type 3 secretion systems (T3SSs) to deliver virulence factors, called effectors, into host cells during infection. The T3SS effectors promote invasion into host cells and the generation of a replicative niche. SopB is a T3SS effector that plays an important role in Salmonella pathogenesis through its lipid phosphatase activity. Here, we show that SopB mediates the recruitment of Rho GTPases (RhoB, RhoD, RhoH, and RhoJ) to bacterial invasion sites. RhoJ contributes to Salmonella invasion, and RhoB and RhoH play an important role in Akt activation. R-Ras1 also contributes to SopB-dependent Akt activation by promoting the localised production of PI(3,4)P2 /PI(3,4,5)P3 . Our studies reveal new signalling factors involved in SopB-dependent Salmonella infection.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Salmonella/patologia , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Células HeLa , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Salmonella/microbiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo
13.
J Virol ; 90(16): 7159-70, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226379

RESUMO

UNLABELLED: The release of infectious hepatitis C virus (HCV) particles from infected cells remains poorly characterized. We previously demonstrated that virus release is dependent on the endosomal sorting complex required for transport (ESCRT). Here, we show a critical role of trans-Golgi network (TGN)-endosome trafficking during the assembly, but principally the secretion, of infectious virus. This was demonstrated by both small interfering RNA (siRNA)-mediated silencing of TGN-associated adaptor proteins and a panel of dominant negative (DN) Rab GTPases involved in TGN-endosome trafficking steps. Importantly, interfering with factors critical for HCV release did not have a concomitant effect on secretion of triglycerides, ApoB, or ApoE, indicating that particles are likely released from Huh7 cells via pathways distinct from that of very-low-density lipoprotein (VLDL). Finally, we show that HCV NS2 perturbs TGN architecture, redistributing TGN membranes to closely associate with HCV core protein residing on lipid droplets. These findings support the notion that HCV hijacks TGN-endosome trafficking to facilitate particle assembly and release. Moreover, although essential for assembly and infectivity, the trafficking of mature virions is seemingly independent of host lipoproteins. IMPORTANCE: The mechanisms by which infectious hepatitis C virus particles are assembled and released from the cell are poorly understood. We show that the virus subverts host cell trafficking pathways to effect the release of virus particles and disrupts the structure of the Golgi apparatus, a key cellular organelle involved in secretion. In addition, we demonstrate that the mechanisms used by the virus to exit the cell are distinct from those used by the cell to release lipoproteins, suggesting that the virus effects a unique modification to cellular trafficking pathways.


Assuntos
Carcinoma Hepatocelular/metabolismo , Endossomos/metabolismo , Hepatite C/metabolismo , Lipoproteínas VLDL/metabolismo , Neoplasias Hepáticas/metabolismo , Liberação de Vírus/fisiologia , Rede trans-Golgi/metabolismo , Transporte Biológico , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Endossomos/genética , Endossomos/virologia , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Microscopia de Fluorescência , Vesículas Secretórias/metabolismo , Vírion/metabolismo , Replicação Viral , Rede trans-Golgi/genética , Rede trans-Golgi/virologia
14.
Oncotarget ; 7(16): 21601-17, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26942872

RESUMO

Despite the fact that the epidermal growth factor (EGF) family member ERBB3 (HER3) is deregulated in many cancers, the list of ERBB3-interacting partners remains limited. Here, we report that the Apaf-1-interacting protein (APIP) stimulates heregulin-ß1 (HRG-ß1)/ERBB3-driven cell proliferation and tumorigenesis. APIP levels are frequently increased in human gastric cancers and gastric cancer-derived cells. Cell proliferation and tumor formation are repressed by APIP downregulation and stimulated by its overexpression. APIP's role in the ERBB3 pathway is not associated with its functions within the methionine salvage pathway. In response to HRG-ß1, APIP binds to the ERBB3 receptor, leading to an enhanced binding of ERBB3 and ERBB2 that results in sustained activations of ERK1/2 and AKT protein kinases. Furthermore, HRG-ß1/ERBB3-dependent signaling is gained in APIP transgenic mouse embryonic fibroblasts (MEFs), but not lost in Apip-/- MEFs. Our findings offer compelling evidence that APIP plays an essential role in ERBB3 signaling as a positive regulator for tumorigenesis, warranting future development of therapeutic strategies for ERBB3-driven gastric cancer.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Carcinogênese/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Pessoa de Meia-Idade , Células NIH 3T3 , Multimerização Proteica , Interferência de RNA , Receptor ErbB-2/química , Receptor ErbB-2/genética , Receptor ErbB-3/química , Receptor ErbB-3/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transplante Heterólogo
15.
Methods Mol Biol ; 1408: 363-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26965136

RESUMO

Optogenetic modules that use genetically encoded elements to control protein function in response to light allow for precise spatiotemporal modulation of signaling pathways. As one of optical approaches, LARIAT (Light-Activated Reversible Inhibition by Assembled Trap) is a unique light-inducible inhibition system that reversibly sequesters target proteins into clusters, generated by multimeric proteins and a blue light-induced heterodimerization module. Here we present a method based on LARIAT for optical inhibition of targets in living mammalian cells. In the protocol, we focus on the inhibition of proteins that modulate cytoskeleton and cell cycle, and describe how to transfect, conduct a photo-stimulation, and analyze the data.


Assuntos
Optogenética/métodos , Actinas/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Divisão Celular , Criptocromos/genética , Criptocromos/metabolismo , Células HeLa , Humanos , Camundongos , Microscopia Confocal/métodos , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Transfecção/métodos
16.
Biotechnol Bioeng ; 113(8): 1639-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26773973

RESUMO

The intracellular delivery of proteins with high efficiency in a receptor-specific manner is of great significance in molecular medicine and biotechnology, but remains a challenge. Herein, we present the development of a highly efficient and receptor-specific delivery platform for protein cargos by combining the receptor binding domain of Escherichia coli Shiga-like toxin and the translocation domain of Pseudomonas aeruginosa exotoxin A. We demonstrated the utility and efficiency of the delivery platform by showing a cytosolic delivery of diverse proteins both in vitro and in vivo in a receptor-specific manner. In particular, the delivery system was shown to be effective for targeting an intracellular protein and consequently suppressing the tumor growth in xenograft mice. The present platform can be widely used for intracellular delivery of diverse functional macromolecules with high efficiency in a receptor-specific manner. Biotechnol. Bioeng. 2016;113: 1639-1646. © 2016 Wiley Periodicals, Inc.


Assuntos
ADP Ribose Transferases/metabolismo , Toxinas Bacterianas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Exotoxinas/metabolismo , Espaço Intracelular/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/metabolismo , Toxinas Shiga/metabolismo , Fatores de Virulência/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Linhagem Celular Tumoral , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exotoxinas/química , Exotoxinas/genética , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Toxinas Shiga/química , Toxinas Shiga/genética , Fatores de Virulência/química , Fatores de Virulência/genética , Exotoxina A de Pseudomonas aeruginosa
17.
Nat Commun ; 5: 4057, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24894073

RESUMO

Receptor tyrosine kinases (RTKs) are a family of cell-surface receptors that have a key role in regulating critical cellular processes. Here, to understand and precisely control RTK signalling, we report the development of a genetically encoded, photoactivatable Trk (tropomyosin-related kinase) family of RTKs using a light-responsive module based on Arabidopsis thaliana cryptochrome 2. Blue-light stimulation (488 nm) of mammalian cells harbouring these receptors robustly upregulates canonical Trk signalling. A single light stimulus triggers transient signalling activation, which is reversibly tuned by repetitive delivery of blue-light pulses. In addition, the light-provoked process is induced in a spatially restricted and cell-specific manner. A prolonged patterned illumination causes sustained activation of extracellular signal-regulated kinase and promotes neurite outgrowth in a neuronal cell line, and induces filopodia formation in rat hippocampal neurons. These light-controllable receptors are expected to create experimental opportunities to spatiotemporally manipulate many biological processes both in vitro and in vivo.


Assuntos
Fatores de Crescimento Neural/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , Pseudópodes/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Arabidopsis , Proteínas de Arabidopsis/genética , Linhagem Celular , Criptocromos/genética , Hipocampo/citologia , Humanos , Luz , Ratos , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo
18.
Cancer Cell ; 25(1): 102-17, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24434213

RESUMO

Current antiangiogenic therapy is limited by its cytostatic nature and systemic side effects. To address these limitations, we have unveiled the role of RhoJ, an endothelial-enriched Rho GTPase, during tumor progression. RhoJ blockade provides a double assault on tumor vessels by both inhibiting tumor angiogenesis and disrupting the preformed tumor vessels through the activation of the RhoA-ROCK (Rho kinase) signaling pathway in tumor endothelial cells, consequently resulting in a functional failure of tumor vasculatures. Moreover, enhanced anticancer effects were observed when RhoJ blockade was employed in concert with a cytotoxic chemotherapeutic agent, angiogenesis-inhibiting agent, or vascular-disrupting agent. These results identify RhoJ blockade as a selective and effective therapeutic strategy for targeting tumor vasculature with minimal side effects.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Neoplasias Experimentais/enzimologia , Neovascularização Patológica/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Org Lett ; 16(2): 410-2, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24369820

RESUMO

A diselenide-based BODIPY probe was prepared; it was found to be sensitive and selective for superoxide in giving [-Se(O)Se(O)-] oxidation. Probing was reversible through the use of biothiols; (77)Se NMR and other types of spectroscopy were employed. Practical medicinal utility was demonstrated in MCF-7/ADR cancer cells.


Assuntos
Compostos de Boro/síntese química , Sondas Moleculares , Compostos Organosselênicos/síntese química , Superóxidos/análise , Compostos de Boro/química , Neoplasias da Mama , Feminino , Humanos , Células MCF-7 , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Compostos Organosselênicos/química , Oxirredução , Células Tumorais Cultivadas
20.
Nat Commun ; 4: 1505, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23422673

RESUMO

Co-immunoprecipitation (co-IP) has become a standard technique, but its protein-band output provides only static, qualitative information about protein-protein interactions. Here we demonstrate a real-time single-molecule co-IP technique that generates real-time videos of individual protein-protein interactions as they occur in unpurified cell extracts. By analysing single Ras-Raf interactions with a 50-ms time resolution, we have observed transient intermediates of the protein-protein interaction and determined all the essential kinetic rates. Using this technique, we have quantified the active fraction of native Ras proteins in xenograft tumours, normal tissue and cancer cell lines. We demonstrate that the oncogenic Ras mutations selectively increase the active-Ras fraction by one order of magnitude, without affecting total Ras levels or single-molecule signalling kinetics. Our approach allows us to probe the previously hidden, dynamic aspects of weak protein-protein interactions. It also suggests a path forward towards precision molecular diagnostics at the protein-protein interaction level.


Assuntos
Sistemas Computacionais , Imunoprecipitação/métodos , Neoplasias/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Cinética , Camundongos , Camundongos Nus , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA