Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 15(727): eabl5405, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35349300

RESUMO

The dense network of capillaries composed of capillary endothelial cells (cECs) and pericytes lies in close proximity to all neurons, ideally positioning it to sense neuron- and glial-derived compounds that enhance regional and global cerebral perfusion. The membrane potential (VM) of vascular cells serves as the physiological bridge that translates brain activity into vascular function. In other beds, the ATP-sensitive K+ (KATP) channel regulates VM in vascular smooth muscle, which is absent in the capillary network. Here, with transgenic mice that expressed a dominant-negative mutant of the pore-forming Kir6.1 subunit specifically in brain cECs or pericytes, we demonstrated that KATP channels were present in both cell types and robustly controlled VM. We further showed that the signaling nucleotide adenosine acted through A2A receptors and the Gαs/cAMP/PKA pathway to activate capillary KATP channels. Moreover, KATP channel stimulation in vivo increased cerebral blood flow (CBF), an effect that was blunted by expression of the dominant-negative Kir6.1 mutant in either capillary cell type. These findings establish an important role for KATP channels in cECs and pericytes in the regulation of CBF.


Assuntos
Células Endoteliais , Pericitos , Adenosina , Trifosfato de Adenosina/metabolismo , Animais , Capilares/metabolismo , Células Endoteliais/metabolismo , Canais KATP/genética , Canais KATP/metabolismo , Camundongos , Pericitos/metabolismo
2.
Front Pain Res (Lausanne) ; 2: 748385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295484

RESUMO

In the urinary bladder, mechanosensitive ion channels (MSCs) underlie the transduction of bladder stretch into sensory signals that are relayed to the PNS and CNS. PIEZO1 is a recently identified MSC that is Ca2+ permeable and is widely expressed throughout the lower urinary tract. Recent research indicates that PIEZO1 is activated by mechanical stretch or by pharmacological agonism via Yoda1. Aberrant activation of PIEZO1 has been suggested to play a role in clinical bladder pathologies like partial bladder outlet obstruction and interstitial cystitis/bladder pain syndrome (IC/BPS). In the present study, we show that intravesical instillation of Yoda1 in female Wistar rats leads to increased voiding frequency for up to 16 hours after administration compared to vehicle treatment. In a cyclophosphamide (CYP) model of cystitis, we found that the gene expression of several candidate MSCs (Trpv1, Trpv4, Piezo1, and Piezo2) were all upregulated in the urothelium and detrusor following chronic CYP-induced cystitis, but not acute CYP-induced cystitis. Functionally with this model, we show that Ca2+ activity is increased in urothelial cells following PIEZO1 activation via Yoda1 in acute and intermediate CYP treatment, but not in naïve (no CYP) nor chronic CYP treatment. Lastly, we show that activation of PIEZO1 may contribute to pathological bladder dysfunction through the downregulation of several tight junction genes in the urothelium including claudin-1, claudin-8, and zona occludens-1. Together, these data suggest that PIEZO1 activation plays a role in dysfunctional voiding behavior and may be a future, clinical target for the treatment of pathologies like IC/BPS.

3.
Am J Physiol Renal Physiol ; 317(6): F1695-F1706, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630542

RESUMO

Transient receptor potential vanilloid family member 4 (TRPV4) transcript and protein expression increased in the urinary bladder and lumbosacral dorsal root ganglia of transgenic mice with chronic urothelial overexpression of nerve growth factor (NGF-OE). We evaluated the functional role of TRPV4 in bladder function with open-outlet cystometry, void spot assays, and natural voiding (Urovoid) assays with the TRPV4 antagonist HC-067047 (1 µM) or vehicle in NGF-OE and littermate wild-type (WT) mice. Blockade of TRPV4 at the level of the urinary bladder significantly (P ≤ 0.01) increased the intercontraction interval (2.2-fold) and void volume (2.6-fold) and decreased nonvoiding contractions (3.0-fold) in NGF-OE mice, with lesser effects (1.3-fold increase in the intercontraction interval and 1.3-fold increase in the void volume) in WT mice. Similar effects of TRPV4 blockade on bladder function in NGF-OE mice were demonstrated with natural voiding assays. Intravesical administration of HC-067047 (1 µM) significantly (P ≤ 0.01) reduced pelvic sensitivity in NGF-OE mice but was without effect in littermate WT mice. Blockade of urinary bladder TRPV4 or intravesical infusion of brefeldin A significantly (P ≤ 0.01) reduced (2-fold) luminal ATP release from the urinary bladder in NGF-OE and littermate WT mice. The results of the present study suggest that TRPV4 contributes to luminal ATP release from the urinary bladder and increased voiding frequency and pelvic sensitivity in NGF-OE mice.


Assuntos
Trifosfato de Adenosina/urina , Morfolinas/farmacologia , Fator de Crescimento Neural/biossíntese , Pelve , Pirróis/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Micção/efeitos dos fármacos , Urotélio/metabolismo , Animais , Brefeldina A/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Crescimento Neural/genética , Estimulação Física , Inibidores da Síntese de Proteínas/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Bexiga Urinária Hiperativa/fisiopatologia , Urotélio/efeitos dos fármacos
4.
J Mol Neurosci ; 68(3): 348-356, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30022438

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate PAC1 receptor (Adcyap1r1) have tissue-specific distributions in the lower urinary tract (LUT). The afferent limb of the micturition reflex is often compromised following bladder injury, disease, and inflammatory conditions. We have previously demonstrated that PACAP signaling contributes to increased voiding frequency and decreased bladder capacity with cystitis. Thus, the present studies investigated the sensory components (e.g., urothelial cells, bladder afferent nerves) of the urinary bladder that may underlie the pathophysiology of aberrant PACAP activation. We utilized bladder-pelvic nerve preparations and urothelial sheet preparations to characterize PACAP-induced bladder afferent nerve discharge with distention and PACAP-induced Ca2+ activity, respectively. We determined that PACAP38 (100 nM) significantly (p ≤ 0.01) increased bladder afferent nerve activity with distention that was blocked with a PAC1/VPAC2 receptor antagonist PACAP6-38 (300 nM). PACAP38 (100 nM) also increased Ca2+ activity in urothelial cells over that observed in control preparations. Taken together, these results establish a role for PACAP signaling in bladder sensory components (e.g., urothelial cells, bladder afferent nerves) that may ultimately facilitate increased voiding frequency.


Assuntos
Potenciais de Ação , Cálcio/metabolismo , Neurônios Aferentes/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Urotélio/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Transdução de Sinais , Urotélio/efeitos dos fármacos
5.
Am J Physiol Renal Physiol ; 315(6): F1583-F1591, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30089031

RESUMO

Social stress causes profound urinary bladder dysfunction in children that often continues into adulthood. We previously discovered that the intensity and duration of social stress influences whether bladder dysfunction presents as overactivity or underactivity. The transient receptor potential vanilloid type 1 (TRPV1) channel is integral in causing stress-induced bladder overactivity by increasing bladder sensory outflow, but little is known about the development of stress-induced bladder underactivity. We sought to determine if TRPV1 channels are involved in bladder underactivity caused by stress. Voiding function, sensory nerve activity, and bladder wall remodeling were assessed in C57BL/6 and TRPV1 knockout mice exposed to intensified social stress using conscious cystometry, ex vivo afferent nerve recordings, and histology. Intensified social stress increased void volume, intermicturition interval, bladder volume, and bladder wall collagen content in C57BL/6 mice, indicative of bladder wall remodeling and underactive bladder. However, afferent nerve activity was unchanged and unaffected by the TRPV1 antagonist capsazepine. Interestingly, all indices of bladder function were unchanged in TRPV1 knockout mice in response to social stress, even though corticotrophin-releasing hormone expression in Barrington's Nucleus still increased. These results suggest that TRPV1 channels in the periphery are a linchpin in the development of stress-induced bladder dysfunction, both with regard to increased sensory outflow that leads to overactive bladder and bladder wall decompensation that leads to underactive bladder. TRPV1 channels represent an intriguing target to prevent the development of stress-induced bladder dysfunction in children.


Assuntos
Neurônios Aferentes/metabolismo , Estresse Psicológico/complicações , Canais de Cátion TRPV/metabolismo , Bexiga Inativa/metabolismo , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Animais , Núcleo de Barrington/metabolismo , Núcleo de Barrington/fisiopatologia , Comportamento Animal , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Comportamento Social , Estresse Psicológico/psicologia , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Bexiga Inativa/etiologia , Bexiga Inativa/genética , Bexiga Inativa/fisiopatologia , Micção , Urodinâmica
6.
J Physiol ; 594(13): 3575-88, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27006168

RESUMO

KEY POINTS: The sensory components of the urinary bladder are responsible for the transduction of bladder filling and are often impaired with neurological injury or disease. Elevated extracellular ATP contributes, in part, to bladder afferent nerve hyperexcitability during urinary bladder inflammation or irritation. Transforming growth factor-ß1 (TGF-ß1) may stimulate ATP release from the urothelium through vesicular exocytosis mechanisms with minimal contribution from pannexin-1 channels to increase bladder afferent nerve discharge. Bladder afferent nerve hyperexcitability and urothelial ATP release with CYP-induced cystitis is decreased with TGF-ß inhibition. These results establish a causal link between an inflammatory mediator, TGF-ß, and intrinsic signalling mechanisms of the urothelium that may contribute to the altered sensory processing of bladder filling. ABSTRACT: The afferent limb of the micturition reflex is often compromised following bladder injury, disease and inflammatory conditions. We have previously demonstrated that transforming growth factor-ß (TGF-ß) signalling contributes to increased voiding frequency and decreased bladder capacity with cystitis. Despite the functional presence of TGF-ß in bladder inflammation, the precise mechanisms of TGF-ß mediating bladder dysfunction are not yet known. Thus, the present studies investigated the sensory components of the urinary bladder that may underlie the pathophysiology of aberrant TGF-ß activation. We utilized bladder-pelvic nerve preparations to characterize bladder afferent nerve discharge and the mechanisms of urothelial ATP release with distention. Our findings indicate that bladder afferent nerve discharge is sensitive to elevated extracellular ATP during pathological conditions of urinary bladder inflammation or irritation. We determined that TGF-ß1 may increase bladder afferent nerve excitability by stimulating ATP release from the urothelium via vesicular exocytosis mechanisms with minimal contribution from pannexin-1 channels. Furthermore, blocking aberrant TGF-ß signalling in cyclophosphamide-induced cystitis with TßR-1 inhibition decreased afferent nerve hyperexcitability with a concomitant decrease in urothelial ATP release. Taken together, these results establish a role for purinergic signalling mechanisms in TGF-ß-mediated bladder afferent nerve activation that may ultimately facilitate increased voiding frequency. The synergy between intrinsic urinary bladder signalling mechanisms and an inflammatory mediator provides novel insight into bladder dysfunction and supports new avenues for therapeutic intervention.


Assuntos
Trifosfato de Adenosina/fisiologia , Cistite/fisiopatologia , Receptores Purinérgicos/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Bexiga Urinária/inervação , Bexiga Urinária/fisiologia , Animais , Conexinas/fisiologia , Ciclofosfamida , Cistite/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Antagonistas Purinérgicos/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Transdução de Sinais , Urotélio/fisiologia
7.
Am J Physiol Regul Integr Comp Physiol ; 309(6): R629-38, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26224686

RESUMO

Social stress has been implicated as a cause of urinary bladder hypertrophy and dysfunction in humans. Using a murine model of social stress, we and others have shown that social stress leads to bladder overactivity. Here, we show that social stress leads to bladder overactivity, increased bladder compliance, and increased afferent nerve activity. In the social stress paradigm, 6-wk-old male C57BL/6 mice were exposed for a total of 2 wk, via barrier cage, to a C57BL/6 retired breeder aggressor mouse. We performed conscious cystometry with and without intravesical infusion of the TRPV1 inhibitor capsazepine, and measured pressure-volume relationships and afferent nerve activity during bladder filling using an ex vivo bladder model. Stress leads to a decrease in intermicturition interval and void volume in vivo, which was restored by capsazepine. Ex vivo studies demonstrated that at low pressures, bladder compliance and afferent activity were elevated in stressed bladders compared with unstressed bladders. Capsazepine did not significantly change afferent activity in unstressed mice, but significantly decreased afferent activity at all pressures in stressed bladders. Immunohistochemistry revealed that TRPV1 colocalizes with CGRP to stain nerve fibers in unstressed bladders. Colocalization significantly increased along the same nerve fibers in the stressed bladders. Our results support the concept that social stress induces TRPV1-dependent afferent nerve activity, ultimately leading to the development of overactive bladder symptoms.


Assuntos
Neurônios Aferentes/metabolismo , Meio Social , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Canais de Cátion TRPV/metabolismo , Bexiga Urinária Hiperativa/etiologia , Bexiga Urinária Hiperativa/metabolismo , Agressão/fisiologia , Agressão/psicologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Cátion TRPV/antagonistas & inibidores , Uretra/patologia , Bexiga Urinária/patologia , Bexiga Urinária Hiperativa/patologia , Micção
8.
Front Neurol ; 1: 127, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21188259

RESUMO

The goal of this study was to develop an in vivo awake mouse model for extracellular bladder sensory nerve recording. A bipolar 125-µm silver electrode was positioned under a single postganglionic bladder nerve. Efferent nerve signals were eliminated by tying off the postganglionic bladder nerve between the major pelvic ganglion and the recording electrode. Sensory nerve activity was measured in the conscious animals 48 h after surgery during continuous intravesical infusion of 0.9% saline/0.5% acetic acid followed by 0.5% acetic acid with capsazepine (10 µM) at a rate of 0.75 ml/h. Continuous infusion of 0.9% NaCl led to a gradual increase in the frequency of sensory nerve firing that peaked upon reaching threshold pressure. Non-micturition contractions were observed in some animals during filling and other animals exhibited only minimal pressure fluctuations; both types of events were associated with a rise in sensory nerve activity. Intravesical infusion of 0.5% acetic acid reduced the intermicturition interval. This was associated with a 2.1-fold increase in bladder pressure during filling and a two-fold increase at both threshold and micturition pressures. Concurrent with these changes, sensory activity increased 2.8-fold during filling and 2.4-fold at threshold pressure. Subsequent intravesical infusion of capsazepine in 0.5% acetic acid reduced filling and threshold pressures by 21 and 31.2%, respectively, and produced corresponding decreases of 36 and 23.4% in sensory nerve activity. The current study shows that multifiber sensory nerve recordings can be reproducibly obtained from conscious mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA