Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Med Philipp ; 58(10): 99-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939426

RESUMO

Background and Objective: Retinoblastoma is one of the most common intraocular cancers among children usually caused by the loss of retinoblastoma protein function. Despite being a highly heritable disease, conventional diagnostic and prognostic methods depend on clinical examination, with limited consideration of cancer genetics in the standard of care. CD133, KRT19, and MUC1 are commonly explored genes for their utility in liquid biopsies of cancer including lung adenocarcinoma. To date, there are few extensive molecular studies on retinoblastoma in Filipino patients. To this end, the study aimed to describe the copy number of CD133, KRT19, and MUC1 in retinoblastoma samples from a Filipino patient and quantitate the respective expression level of these genes. Methods: Hematoxylin & Eosin (H&E) staining was utilized to characterize the retinoblastoma tissue while fluorescence in situ hybridization (FISH) using probes specific to CD133, KRT19, and MUC1 was performed to determine the copy number of genes in retinoblastoma samples from a Filipino patient (n = 1). The gene expression of CD133, MUC1, and KRT19 was quantitated using RT-qPCR. Results: The H&E staining in the retinoblastoma tissue shows poorly differentiated cells with prominent basophilic nuclei. CD133 was approximately 1.5-fold overexpressed in the retinoblastoma tissue with respect to the normal tissue, while MUC1 and KRT19 are only slightly expressed. Multiple intense signals of each probe were localized in the same nuclear areas throughout the retinoblastoma tissue, with high background noise. Conclusion: These findings suggest that CD133 is a potential biomarker for the staging and diagnosis of retinoblastoma in Filipino cancer patients. However, further optimization of the hybridization procedures is recommended.

2.
Glycobiology ; 34(6)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38579012

RESUMO

Biological experiments are often conducted in vitro using immortalized cells due to their accessibility and ease of propagation compared to primary cells and live animals. However, immortalized cells may present different proteomic and glycoproteomic characteristics from the primary cell source due to the introduction of genes that enhance proliferation (e.g. CDK4) or enable telomere lengthening. To demonstrate the changes in phenotype upon CDK4-transformation, we performed LC-MS/MS glycomic and proteomic characterizations of a human lung cancer primary cell line (DTW75) and a CDK4-transformed cell line (GL01) derived from DTW75. We observed that the primary and CDK4-transformed cells expressed significantly different levels of sialylated, fucosylated, and sialofucosylated N-glycans. Specifically, the primary cells expressed higher levels of hybrid- and complex-type sialylated N-glycans, while CDK4-transformed cells expressed higher levels of complex-type fucosylated and sialofucosylated N-glycans. Further, we compared the proteomic differences between the cell lines and found that CDK4-transformed cells expressed higher levels of RNA-binding and adhesion proteins. Further, we observed that the CDK4-transformed cells changed N-glycosylation after 31 days in cell culture, with a decrease in high-mannose and increase in fucosylated, sialylated, and sialofucosylated N-glycans. Identifying these changes between primary and CDK4-transformed cells will provide useful insight when adapting cell lines that more closely resemble in vivo physiological conditions.


Assuntos
Quinase 4 Dependente de Ciclina , Neoplasias Pulmonares , Polissacarídeos , Proteoma , Humanos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteoma/metabolismo , Proteoma/análise , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Glicosilação , Glicômica , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genética
3.
PLoS One ; 18(12): e0293046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38039314

RESUMO

Human adenovirus (HAdV), particularly the HAdV type 5 (HAdV-5), has been extensively utilized in the development of vector vaccines due to its high immunogenicity, good safety profile, and ease of propagation. However, one of the main challenges in its use is the presence of pre-existing immunity among vaccine recipients. Pre-existing neutralizing antibodies (NAbs) can prevent the uptake of HAdV-5 vectors and reduce vaccine efficacy. Hence, this study investigated the seroprevalence of NAbs against HAdV-5 in urban and rural regions of the Philippines. Luciferase-based neutralization assay was performed on 391 plasma/serum samples. Out of these samples, 346 or 88.5% were positive for HAdV-5 NAbs, and the majority of them (56.8%) had high titers against the virus. Among the regions included in this study, Bicol (Region V) had the highest seroprevalence rate (94.1%). Our findings show that a significant number of adults in the Philippines have pre-existing immunity against HAdV-5. This supports the recommendation that vaccination programs in the country should consider implementing vaccination techniques, such as a prime-boost regimen or addition of booster doses, to address the potential negative effects of pre-existing HAdV-5 immunity in the efficacy of adenoviral vector-based vaccines.


Assuntos
Vacinas contra Adenovirus , Adenovírus Humanos , Adulto , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Estudos Soroepidemiológicos , Filipinas/epidemiologia
4.
Adv Healthc Mater ; 12(26): e2300960, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37395729

RESUMO

Bioresorbable perivascular scaffolds loaded with antiproliferative agents have been shown to enhance arteriovenous fistula (AVF) maturation by inhibiting neointimal hyperplasia (NIH). These scaffolds, which can mimic the three-dimensional architecture of the vascular extracellular matrix, also have an untapped potential for the local delivery of cell therapies against NIH. Hence, an electrospun perivascular scaffold from polycaprolactone (PCL) to support mesenchymal stem cell (MSC) attachment and gradual elution at the AVF's outflow vein is fabricated. Chronic kidney disease (CKD) in Sprague-Dawley rats is induced by performing 5/6th nephrectomy, then AVFs for scaffold application are created. The following groups of CKD rats are compared: no perivascular scaffold (i.e., control), PCL alone, and PCL+MSC scaffold. PCL and PCL+MSC significantly improve ultrasonographic (i.e., luminal diameter, wall-to-lumen ratio, and flow rate) and histologic (i.e., neointima-to-lumen ratio, neointima-to-media ratio) parameters compared to control, with PCL+MSC demonstrating further improvement in these parameters compared to PCL alone. Moreover, only PCL+MSC significantly reduces 18 F-fluorodeoxyglucose uptake on positron emission tomography. These findings suggest that adding MSCs promotes greater luminal expansion and potentially reduces the inflammatory process underlying NIH. The results demonstrate the utility of mechanical support loaded with MSCs at the outflow vein immediately after AVF formation to support maturation by minimizing NIH.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Células-Tronco Mesenquimais , Insuficiência Renal Crônica , Ratos , Animais , Hiperplasia/patologia , Ratos Sprague-Dawley , Neointima/patologia , Implantes Absorvíveis , Tomografia Computadorizada por Raios X , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/patologia , Fístula Arteriovenosa/patologia , Células-Tronco Mesenquimais/patologia , Alicerces Teciduais
5.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511512

RESUMO

Mesenchymal stem cell (MSC)-seeded polymeric perivascular wraps have been shown to enhance arteriovenous fistula (AVF) maturation. However, the wraps' radiolucency makes their placement and integrity difficult to monitor. Through electrospinning, we infused gold nanoparticles (AuNPs) into polycaprolactone (PCL) wraps to improve their radiopacity and tested whether infusion affects the previously reported beneficial effects of the wraps on the AVF's outflow vein. Sprague Dawley rat MSCs were seeded on the surface of the wraps. We then compared the effects of five AVF treatments-no perivascular wrap (i.e., control), PCL wrap, PCL + MSC wrap, PCL-Au wrap, and PCL-Au + MSC wrap-on AVF maturation in a Sprague Dawley rat model of chronic kidney disease (n = 3 per group). Via micro-CT, AuNP-infused wraps demonstrated a significantly higher radiopacity compared to that of the wraps without AuNPs. Wraps with and without AuNPs equally reduced vascular stenoses, as seen via ultrasonography and histomorphometry. In the immunofluorescence analysis, representative MSC-seeded wraps demonstrated reduced neointimal staining for markers of infiltration with smooth muscle cells (α-SMA), inflammatory cells (CD45), and fibroblasts (vimentin) compared to that of the control and wraps without MSCs. In conclusion, AuNP infusion allows in vivo monitoring via micro-CT of MSC-seeded polymeric wraps over time, without compromising the benefits of the wrap for AVF maturation.


Assuntos
Fístula Arteriovenosa , Células-Tronco Mesenquimais , Nanopartículas Metálicas , Ratos , Animais , Ouro , Ratos Sprague-Dawley , Implantes Absorvíveis , Fístula Arteriovenosa/terapia
6.
ACS Omega ; 8(23): 20303-20312, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332828

RESUMO

Glycoproteins are an underexploited drug target for cancer therapeutics. In this work, we integrated computational methods in network pharmacology and in silico docking approaches to identify phytochemical compounds that could potentially interact with several cancer-associated glycoproteins. We first created a database of phytochemicals from selected plant species, Manilkara zapota (sapodilla/chico), Mangifera indica (mango), Annona muricata (soursop/guyabano), Artocarpus heterophyllus (jackfruit/langka), Lansium domesticum (langsat/lanzones), and Antidesma bunius (bignay), and performed pharmacokinetic analysis to determine their drug-likeness properties. We then constructed a phytochemical-glycoprotein interaction network and characterized the degree of interactions between the phytochemical compounds and with cancer-associated glycoproteins and other glycosylation-related proteins. We found a high degree of interactions from α-pinene (Mangifera indica), cyanomaclurin (Artocarpus heterophyllus), genistein (Annona muricata), kaempferol (Annona muricata and Antidesma bunius), norartocarpetin (Artocarpus heterophyllus), quercetin (Annona muricata, Antidesma bunius, Manilkara zapota, Mangifera indica), rutin (Annona muricata, Antidesma bunius, Lansium domesticum), and ellagic acid (Antidesma bunius and Mangifera indica). Subsequent docking analysis confirmed that these compounds could potentially bind to EGFR, AKT1, KDR, MMP2, MMP9, ERBB2, IGF1R, MTOR, and HRAS proteins, which are known cancer biomarkers. In vitro cytotoxicity assays of the plant extracts showed that the n-hexane, ethyl acetate, and methanol leaf extracts from A. muricata, L. domesticum and M. indica gave the highest growth inhibitory activity against A549 lung cancer cells. These may help further explain the reported cytotoxic activities of select compounds from these plant species.

7.
Cancers (Basel) ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36900350

RESUMO

Lung cancer is the leading cause of cancer death and non-small cell lung carcinoma (NSCLC) accounting for majority of lung cancers. Thus, it is important to find potential biomarkers, such as glycans and glycoproteins, which can be used as diagnostic tools against NSCLC. Here, the N-glycome, proteome, and N-glycosylation distribution maps of tumor and peritumoral tissues of Filipino lung cancer patients (n = 5) were characterized. We present several case studies with varying stages of cancer development (I-III), mutation status (EGFR, ALK), and biomarker expression based on a three-gene panel (CD133, KRT19, and MUC1). Although the profiles of each patient were unique, specific trends arose that correlated with the role of aberrant glycosylation in cancer progression. Specifically, we observed a general increase in the relative abundance of high-mannose and sialofucosylated N-glycans in tumor samples. Analysis of the glycan distribution per glycosite revealed that these sialofucosylated N-glycans were specifically attached to glycoproteins involved in key cellular processes, including metabolism, cell adhesion, and regulatory pathways. Protein expression profiles showed significant enrichment of dysregulated proteins involved in metabolism, adhesion, cell-ECM interactions, and N-linked glycosylation, supporting the protein glycosylation results. The present case series study provides the first demonstration of a multi-platform mass-spectrometric analysis specifically for Filipino lung cancer patients.

8.
Cell Biochem Funct ; 41(2): 166-176, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36606472

RESUMO

Lansium domesticum is identified as a potential source of anticancer compounds. However, there are minimal studies on its anti-lung cancer properties as well as its mechanism of action. Here, we show the specificity of lanzones hexane (LH) leaf extracts to non-small cell lung cancer cells (A549) compared to normal lung fibroblast cells (CCD19-Lu) and normal epithelial prostate cells (PNT2). Subsequent bioassay-guided fractionation of the hexane leaf extracts identified two bioactive fractions with IC50 values of 2.694 µg/ml (LH6-6) and 2.883 µg/ml (LH7-6). LH 6-6 treatment (1 µg/ml concentration) also showed a significantly reduced migration potential of A549 relative to the control. Thirty-one phytocompounds were isolated and identified using gas chromatography-mass spectrometric (MS) analysis and were then subjected to network pharmacology analysis to assess its effects on lung cancer target proteins. Using liquid chromatography-tandem mass spectrometry proteomics experiments, we were able to show that these compounds cause cytotoxic effects through targeting mitochondrial processes in A549 lung cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Hexanos/química , Extratos Vegetais/química , Proteômica , Linhagem Celular Tumoral
9.
J Biomol Struct Dyn ; 41(5): 1540-1552, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34989310

RESUMO

Targeting enzymes associated with the biosynthesis of aberrant glycans is an under-utilized strategy in discovering potential inhibitors or drugs against cancer. The formation of cancer-associated glycans is mainly due to the dysregulated expression of glycosyltransferases and glycosidases, which play crucial roles in maintaining cellular structure and function. We screened a database of more than 14,000 compounds consisting of natural products and drugs for inhibition against four glycosylation enzymes - Alpha1-6FucT, ST6Gal1, ERMan1, and GlcNAcT-V. The top inhibitors identified against each enzyme were subsequently analyzed for potential binding against all four enzymes. In silico screening results show several promising candidates that could potentially inhibit all four enzymes: (1) Amb20622156 (demethylwedelolactone) [ERMan1: -9.3 kcal/mol; Alpha1-6FucT: -7.3 kcal/mol; ST6Gal1: -8.4 kcal/mol; GlcNAcT-V: -7.2 kcal/mol], (2) Amb22173588 (1,2-dihydrotanshinone I) [ERMan1: -9.3 kcal/mol; Alpha1-6FucT: -6.1 kcal/mol; ST6Gal1: -9.2 kcal/mol; GlcNAcT-V: -7.9 kcal/mol], and (3) Amb22173591 (tanshinol B) [ERMan1: -9.3 kcal/mol; Alpha1-6FucT: -6.0 kcal/mol; ST6Gal1: -9.8 kcal/mol; GlcNAcT-V: -7.7 kcal/mol]. Drug-enzyme active site residue interaction analyses show that the putative inhibitors form non-covalent bonding interactions with key active site residues in each enzyme, suggesting critical target residues in the four enzymes' active sites. Furthermore, pharmacokinetic property prediction analysis using pkCSM indicates that all of these inhibitors have good ADMETox properties (i.e., log P < 5, Caco-2 permeability > 0.90, intestinal absorption > 30%, skin permeability>-2.5, CNS permeability <-3, maximum tolerated dose < 0.477, minnow toxicity<-0.3). The in silico docking approach to glycosylation enzyme inhibitor prediction could help guide and streamline the discovery of novel inhibitors against enzymes involved in aberrant protein glycosylation.Communicated by Ramaswamy H. Sarma.


Assuntos
Detecção Precoce de Câncer , Neoplasias , Humanos , Glicosilação , Células CACO-2 , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico
10.
ACS Omega ; 7(44): 40230-40240, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385894

RESUMO

Aberrant glycosylation has been extensively reported in cancer, with fundamental changes in the glycosylation patterns of cell-surface and secreted proteins largely occurring during cancer progression. As such, serum glycan and glycopeptide biomarkers have been discovered using mass spectrometry and proposed for cancer detection. Here, we report for the first time potential serum N-glycan and glycopeptide biomarkers for Philippine lung cancer patients. The N-glycan and glycoprotein profiles of a cohort (n = 26 patients, n = 22 age- and gender-matched) of lung cancer patients were analyzed and compared to identify potential N-glycan and glycopeptide serum biomarkers using nano-QToF-MS/MS and ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry dynamic multiple monitoring methods, respectively. Statistical analyses identified differential N-glycan and glycopeptide abundances. The N-glycans were mostly sialylated and sialofucosylated branched structures. The glycopeptides involved proteins in complement and coagulation cascades (p adj = 6.418 × 10-4), innate immunity (p adj = 6.094 × 10-3), acute inflammatory response (p adj = 6.404 × 10-5), defense response (p adj = 2.082 × 10-4), complement activation pathways (p adj = 1.895 × 10-2), and immunoglobulin-mediated immune response pathways (p adj = 4.818 × 10-2). Biomarker models were constructed using serum N-glycans [area under the curve (AUC) = 0.775; 95% CI: 0.617-0.931] and glycopeptides (AUC = 0.959; 95% CI: 0.85-1.0), with glycopeptides having higher accuracies than N-glycans. The results suggest that in the Philippine lung cancer patient sera, specific N-glycans and site-specific glycans are differentially expressed between cases and controls. This report represents the first serum glycan and glycopeptide biomarkers of Philippine lung cancer patients, further demonstrating the utility of mass spectrometry-based glycomic and glycoproteomic methods.

11.
Molecules ; 27(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744954

RESUMO

Cancer progression is linked to aberrant protein glycosylation due to the overexpression of several glycosylation enzymes. These enzymes are underexploited as potential anticancer drug targets and the development of rapid-screening methods and identification of glycosylation inhibitors are highly sought. An integrated bioinformatics and mass spectrometry-based glycomics-driven glycoproteomics analysis pipeline was performed to identify an N-glycan inhibitor against lung cancer cells. Combined network pharmacology and in silico screening approaches were used to identify a potential inhibitor, pictilisib, against several glycosylation-related proteins, such as Alpha1-6FucT, GlcNAcT-V, and Alpha2,6-ST-I. A glycomics assay of lung cancer cells treated with pictilisib showed a significant reduction in the fucosylation and sialylation of N-glycans, with an increase in high mannose-type glycans. Proteomics analysis and in vitro assays also showed significant upregulation of the proteins involved in apoptosis and cell adhesion, and the downregulation of proteins involved in cell cycle regulation, mRNA processing, and protein translation. Site-specific glycoproteomics analysis further showed that glycoproteins with reduced fucosylation and sialylation were involved in apoptosis, cell adhesion, DNA damage repair, and chemical response processes. To determine how the alterations in N-glycosylation impact glycoprotein dynamics, modeling of changes in glycan interactions of the ITGA5-ITGB1 (Integrin alpha 5-Integrin beta-1) complex revealed specific glycosites at the interface of these proteins that, when highly fucosylated and sialylated, such as in untreated A549 cells, form greater hydrogen bonding interactions compared to the high mannose-types in pictilisib-treated A549 cells. This study highlights the use of mass spectrometry to identify a potential glycosylation inhibitor and assessment of its impact on cell surface glycoprotein abundance and protein-protein interaction.


Assuntos
Glicômica , Neoplasias Pulmonares , Glicômica/métodos , Glicoproteínas/química , Glicosilação , Humanos , Integrinas/metabolismo , Manose , Espectrometria de Massas , Polissacarídeos/química
12.
Int J Hyperthermia ; 38(1): 650-662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33882773

RESUMO

BACKGROUND: Metastatic prostate cancer in bone is difficult to treat as the tumor cells are relatively resistant to hormonal or chemotherapies when compared to primary prostate cancer. Irreversible electroporation (IRE) is a minimally invasive ablation procedure that has potential applications in the management of prostate cancer in bone. However, a common limitation of IRE is tumor recurrence, which arises from incomplete ablation that allows remaining cancer cells to proliferate. In this study, we combined IRE with radium-223 (Ra-223), a bone-seeking radionuclide that emits short track length alpha particles and thus is associated with reduced damage to the bone marrow and evaluated the impact of the combination treatment on bone-forming prostate cancer tumors. METHODS: The antitumor activity of IRE and Ra-223 as single agents and in combination was tested in vitro against three bone morphogenetic protein 4 (BMP4)-expressing prostate cancer cell lines (C4-2B-BMP4, Myc-CaP-BMP4, and TRAMP-C2-BMP4). Similar evaluation was performed in vivo using a bone-forming C4-2B-BMP4 tumor model in nude mice. RESULTS: IRE and Ra-223 as monotherapy inhibited prostate cancer cell proliferation in vitro, and their combination resulted in significant reduction in cell viability compared to monotherapy. In vivo evaluation revealed that IRE with single-dose administration of Ra-233, compared to IRE alone, reduced the rate of tumor recurrence by 40% following initial apparent complete ablation and decreased the rate of proliferation of incompletely ablated tumor as quantified in Ki-67 staining (53.58 ± 16.0% for IRE vs. 20.12 ± 1.63%; for IRE plus Ra-223; p = 0.004). Histological analysis qualitatively showed the enhanced killing of tumor cells adjacent to bone by Ra-223 compared to those treated with IRE alone. CONCLUSION: IRE in combination with Ra-223, which enhanced the destruction of cancer cells that are adjacent to bone, resulted in reduction of tumor recurrence through improved clearance of proliferative cells in the tumor region.


Assuntos
Neoplasias da Próstata , Rádio (Elemento) , Animais , Eletroporação , Humanos , Masculino , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia , Neoplasias da Próstata/radioterapia , Rádio (Elemento)/uso terapêutico
13.
Toxicon ; 51(5): 890-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18272193

RESUMO

The gem turrids (genus Gemmula Weinkauff, 1875) are venomous snails in the family Turridae. A gene superfamily of disulfide-rich peptides expressed in Gemmula venom ducts was characterized. Gemmula speciosa (Reeve, 1843) venom duct cDNA clones revealed two different conotoxin-like prepropeptide precursors, with identical signal sequences, a largely conserved pro region, and a cysteine-rich C-terminal mature peptide region. The conserved signal sequence was used to successfully amplify homologous genes from three other Gemmula species; all had the same pattern of Cys residues in the predicted mature venom peptide. Although the signal sequence and propeptide regions were highly conserved, the mature toxin regions diverged greatly in sequence, except that the Cys residues were conserved. We designate this as the Pg-gene superfamily (Pg-superfamily) of Gemmula venom peptides. Purification of two members of the family directly from G. speciosa venom was achieved; amino acid sequence analysis revealed that these peptides are highly posttranslationally modified. With at least 10-fold as many species of turrids as cone snails, identification of rapidly diversifying gene superfamilies such as the Pg-superfamily of Gemmula is essential before the facile and systematic discovery and characterization of peptide toxins from turrid venoms can be achieved.


Assuntos
Venenos de Moluscos/química , Peptídeos/química , Peptídeos/toxicidade , Caramujos/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Complementar , Dados de Sequência Molecular , Venenos de Moluscos/toxicidade , Caramujos/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA