Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Front Immunol ; 15: 1355845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390327

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a dysfunction of the immune system. Mesenchymal stromal cell (MSCs) derived extracellular vesicles (EVs) are nanometer-sized particles carrying a diverse range of bioactive molecules, such as proteins, miRNAs, and lipids. Despite the methodological disparities, recent works on MSC-EVs have highlighted their broad immunosuppressive effect, thus driving forwards the potential of MSC-EVs in the treatment of chronic diseases. Nonetheless, their mechanism of action is still unclear, and better understanding is needed for clinical application. Therefore, we describe in this review the diverse range of bioactive molecules mediating their immunomodulatory effect, the techniques and possibilities for enhancing their immune activity, and finally the potential application to SLE.


Assuntos
Vesículas Extracelulares , Lúpus Eritematoso Sistêmico , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lúpus Eritematoso Sistêmico/terapia , Lúpus Eritematoso Sistêmico/metabolismo , Células-Tronco Mesenquimais/metabolismo
2.
Viruses ; 16(2)2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38400063

RESUMO

Although cells of the myeloid lineages, including tissue macrophages and conventional dendritic cells, were rapidly recognized, in addition to CD4+ T lymphocytes, as target cells of HIV-1, their specific roles in the pathophysiology of infection were initially largely neglected. However, numerous studies performed over the past decade, both in vitro in cell culture systems and in vivo in monkey and humanized mouse animal models, led to growing evidence that macrophages play important direct and indirect roles as HIV-1 target cells and in pathogenesis. It has been recently proposed that macrophages are likely involved in all stages of HIV-1 pathogenesis, including virus transmission and dissemination, but above all, in viral persistence through the establishment, together with latently infected CD4+ T cells, of virus reservoirs in many host tissues, the major obstacle to virus eradication in people living with HIV. Infected macrophages are indeed found, very often as multinucleated giant cells expressing viral antigens, in almost all lymphoid and non-lymphoid tissues of HIV-1-infected patients, where they can probably persist for long period of time. In addition, macrophages also likely participate, directly as HIV-1 targets or indirectly as key regulators of innate immunity and inflammation, in the chronic inflammation and associated clinical disorders observed in people living with HIV, even in patients receiving effective antiretroviral therapy. The main objective of this review is therefore to summarize the recent findings, and also to revisit older data, regarding the critical functions of tissue macrophages in the pathophysiology of HIV-1 infection, both as major HIV-1-infected target cells likely found in almost all tissues, as well as regulators of innate immunity and inflammation during the different stages of HIV-1 pathogenesis.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Vírus da Imunodeficiência Símia , Humanos , Animais , Camundongos , Macrófagos , HIV-1/fisiologia , Inflamação , Linfócitos T CD4-Positivos , Latência Viral , Replicação Viral
3.
J Allergy Clin Immunol ; 152(5): 1303-1311.e1, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37506976

RESUMO

BACKGROUND: Cryopyrin-associated periodic syndrome (CAPS) is associated with NLRP3 pathogenic variants, mostly located in the NACHT (neuronal apoptosis inhibitor protein, MHC class 2 transcription activator, incompatibility locus protein from Podospora anserina, telomerase-associated protein) domain. Cold-induced urticarial rash is among the main clinical features. However, this study identified a series of 14 patients with pathogenic variants of the Y861 residue (p.Tyr861) of the LRR domain of NLRP3 and minimal prevalence of cold-induced urticarial rash. OBJECTIVES: This study aimed to address a possible genotype/phenotype correlation for patients with CAPS and to investigate at the cellular levels the impact of the Y861C substitution (p.Tyr861Cys) on NLRP3 activation. METHODS: Clinical features of 14 patients with CAPS and heterozygous substitution at position 861 in the LRR domain of NLRP3 were compared to clinical features of 48 patients with CAPS and pathogenic variants outside the LRR domain of NLRP3. IL-1ß secretion by PBMCs and purified monocytes from patients and healthy donors was evaluated following LPS and monosodium urate crystal stimulation. RESULTS: Patients with substitution at position 861 of NLRP3 demonstrated a higher prevalence of sensorineural hearing loss while being less prone to skin urticarial. In contrast to patients with classical CAPS, cells from patients with a pathogenic variant at position 861 required an activation signal to secrete IL-1ß but produced more IL-1ß during the early and late phase of secretion than cells from healthy donors. CONCLUSIONS: Pathogenic variants of Y861 of NLRP3 drive a boost-dependent oversecretion of IL-1ß associated with an atypical CAPS phenotype.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Exantema , Urticária , Humanos , Síndromes Periódicas Associadas à Criopirina/genética , Exantema/complicações , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fenótipo , Urticária/genética
4.
J Allergy Clin Immunol ; 152(4): 972-983, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343845

RESUMO

BACKGROUND: Gain-of-function variants of JAK1 drive a rare immune dysregulation syndrome associated with atopic dermatitis, allergy, and eosinophilia. OBJECTIVES: This study sought to describe the clinical and immunological characteristics associated with a new gain-of-function variant of JAK1 and report the therapeutic efficacy of Janus kinase (JAK) inhibition. METHODS: The investigators identified a family affected by JAK1-associated autoinflammatory disease and performed clinical assessment and immunological monitoring on 9 patients. JAK1 signaling was studied by flow and mass cytometry in patients' cells at basal state or after immune stimulation. A molecular disease signature in the blood was studied at the transcriptomic level. Patients were treated with 1 of 2 JAK inhibitors: either baricitinib or upadacitinib. Clinical, cellular, and molecular response were evaluated over a 2-year period. RESULTS: Affected individuals displayed a syndromic disease with prominent allergy including atopic dermatitis, ichthyosis, arthralgia, chronic diarrhea, disseminated calcifying fibrous tumors, and elevated whole blood histamine levels. A variant of JAK1 localized in the pseudokinase domain was identified in all 9 affected, tested patients. Hyper-phosphorylation of STAT3 was found in 5 of 6 patients tested. Treatment of patients' cells with baricitinib controlled most of the atypical hyper-phosphorylation of STAT3. Administration of baricitinib to patients led to rapid improvement of the disease in all adults and was associated with reduction of systemic inflammation. CONCLUSIONS: Patients with this new JAK1 gain-of-function pathogenic variant displayed very high levels of blood histamine and showed a variable combination of atopy with articular and gastrointestinal manifestations as well as calcifying fibrous tumors. The disease, which appears to be linked to STAT3 hyperactivation, was well controlled under treatment by JAK inhibitors in adult patients.


Assuntos
Dermatite Atópica , Inibidores de Janus Quinases , Neoplasias , Adulto , Humanos , Inibidores de Janus Quinases/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Histamina , Neoplasias/tratamento farmacológico , Janus Quinase 1/genética
5.
Rheumatology (Oxford) ; 60(12): 5801-5808, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33576769

RESUMO

OBJECTIVE: To evaluate the efficacy and safety of Janus kinase inhibitors (JAKis) in JDM. METHODS: We conducted a single-centre retrospective study of patients with JDM treated by JAKi with a follow-up of at least 6 months. Proportion of clinically inactive disease (CID) within 6 months of JAKi initiation was evaluated using PRINTO criteria and skin Disease Activity Score. Serum IFN-α concentration was measured by Simoa assay. RESULTS: Nine refractory and one new-onset patients with JDM treated with ruxolitinib (n = 7) or baricitinib (n = 3) were included. The main indications for treatment were refractory muscle involvement (n = 8) and ulcerative skin disease (n = 2). CID was achieved in 5/10 patients (two/two anti-MDA5, three/four anti-NXP2, zero/three anti-TIF1γ-positive patients) within 6 months of JAKi introduction. All responders could withdraw plasmatic exchange, immunoadsorption and other immunosuppressive drugs. The mean daily steroid dose decreased from 1.1 mg/kg (range 0.35-2 mg/kg/d) to 0.1 (range, 0-0.3, P = 0.008) in patients achieving CID, and was stopped in two. Serum IFN-α concentrations were elevated in all patients at the time of treatment initiation and normalized in both responder and non-responder. A muscle biopsy repeated in one patient 26 months after the initiation of JAKi, showed a complete restoration of muscle endomysial microvascular bed. Herpes zoster and skin abscesses developed in three and two patients, respectively. CONCLUSION: JAKis resulted in a CID in a subset of new-onset or refractory patients with JDM and may dramatically reverse severe muscle vasculopathy. Overall tolerance was good except for a high rate of herpes zoster infection.


Assuntos
Azetidinas/uso terapêutico , Dermatomiosite/tratamento farmacológico , Inibidores de Janus Quinases/uso terapêutico , Nitrilas/uso terapêutico , Purinas/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Adolescente , Autoanticorpos/sangue , Autoanticorpos/imunologia , Biomarcadores/sangue , Criança , Pré-Escolar , Dermatomiosite/sangue , Dermatomiosite/imunologia , Feminino , Humanos , Interferon-alfa/sangue , Janus Quinases , Masculino , Estudos Retrospectivos , Resultado do Tratamento
6.
Eur J Med Chem ; 186: 111855, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740051

RESUMO

There is an increasing interest in the field of cancer therapy for small compounds targeting pyrimidine biosynthesis, and in particular dihydroorotate dehydrogenase (DHODH), the fourth enzyme of this metabolic pathway. Three available DHODH structures, featuring three different known inhibitors, were used as templates to screen in silico an original chemical library from Erevan University. This process led to the identification of P1788, a compound chemically related to the alkaloid cerpegin, as a new class of pyrimidine biosynthesis inhibitors. In line with previous reports, we investigated the effect of P1788 on the cellular innate immune response. Here we show that pyrimidine depletion by P1788 amplifies cellular response to both type-I and type II interferons, but also induces DNA damage as assessed by γH2AX staining. Moreover, the addition of inhibitors of the DNA damage response led to the suppression of the P1788 stimulatory effects on the interferon pathway. This demonstrates that components of the DNA damage response are bridging the inhibition of pyrimidine biosynthesis by P1788 to the interferon signaling pathway. Altogether, these results provide new insights on the mode of action of novel pyrimidine biosynthesis inhibitors and their development for cancer therapies.


Assuntos
Furanos/farmacologia , Piridinas/farmacologia , Piridonas/farmacologia , Pirimidinas/antagonistas & inibidores , Células Cultivadas , Dano ao DNA , Relação Dose-Resposta a Droga , Furanos/síntese química , Furanos/química , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Piridonas/química , Pirimidinas/biossíntese , Relação Estrutura-Atividade
7.
Sci Adv ; 5(7): eaav9019, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309143

RESUMO

Type I interferons are highly potent cytokines essential for self-protection against tumors and infections. Deregulations of type I interferon signaling are associated with multiple diseases that require novel therapeutic options. Here, we identified the small molecule, IT1t, a previously described CXCR4 ligand, as a highly potent inhibitor of Toll-like receptor 7 (TLR7)-mediated inflammation. IT1t inhibits chemical (R848) and natural (HIV) TLR7-mediated inflammation in purified human plasmacytoid dendritic cells from blood and human tonsils. In a TLR7-dependent lupus-like model, in vivo treatment of mice with IT1t drives drastic reduction of both systemic inflammation and anti-double-stranded DNA autoantibodies and prevents glomerulonephritis. Furthermore, IT1t controls inflammation, including interferon α secretion, in resting and stimulated cells from patients with systemic lupus erythematosus. Our findings highlight a groundbreaking immunoregulatory property of CXCR4 signaling that opens new therapeutic perspectives in inflammatory settings and autoimmune diseases.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Ligantes , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Ligação Proteica
8.
SLAS Discov ; 24(1): 25-37, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184441

RESUMO

Natural killer (NK) cells are essential players of the innate immune response that secrete cytolytic factors and cytokines such as IFN-γ when contacting virus-infected or tumor cells. They represent prime targets in immunotherapy as defects in NK cell functions are hallmarks of many pathological conditions, such as cancer and chronic infections. The functional screening of chemical libraries or biologics would greatly help identify new modulators of NK cell activity, but commonly used methods such as flow cytometry are not easily scalable to high-throughput settings. Here we describe an efficient assay to measure the natural cytotoxicity of primary NK cells where the bioluminescent enzyme NanoLuc is constitutively expressed in the cytoplasm of target cells and is released in co-culture supernatants when lysis occurs. We fully characterized this assay using either purified NK cells or total peripheral blood mononuclear cells (PBMCs), including some patient samples, as effector cells. A pilot screen was also performed on a library of 782 metabolites, xenobiotics, and common drugs, which identified dextrometorphan and diphenhydramine as novel NK cell inhibitors. Finally, this assay was further improved by developing a dual-reporter cell line to simultaneously measure NK cell cytotoxicity and IFN-γ secretion in a single well, extending the potential of this system.


Assuntos
Células Matadoras Naturais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Fluxo/métodos , Células HEK293 , Humanos , Interferon gama/metabolismo , Células K562 , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Luciferases/metabolismo , Projetos Piloto
9.
Nat Commun ; 9(1): 2207, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880824

RESUMO

Zika virus (ZIKV) causes severe birth defects and can be transmitted via sexual intercourse. Semen from ZIKV-infected individuals contains high viral loads and may therefore serve as an important vector for virus transmission. Here we analyze the effect of semen on ZIKV infection of cells and tissues derived from the anogenital region. ZIKV replicates in all analyzed cell lines, primary cells, and endometrial or vaginal tissues. However, in the presence of semen, infection by ZIKV and other flaviviruses is potently inhibited. We show that semen prevents ZIKV attachment to target cells, and that an extracellular vesicle preparation from semen is responsible for this anti-ZIKV activity. Our findings suggest that ZIKV transmission is limited by semen. As such, semen appears to serve as a protector against sexual ZIKV transmission, despite the availability of highly susceptible cells in the anogenital tract and high viral loads in this bodily fluid.


Assuntos
Sêmen/imunologia , Doenças Virais Sexualmente Transmissíveis/transmissão , Ligação Viral , Infecção por Zika virus/transmissão , Zika virus/fisiologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Vesículas Extracelulares/imunologia , Feminino , Fibroblastos , Genitália/citologia , Voluntários Saudáveis , Humanos , Concentração Inibidora 50 , Masculino , Cultura Primária de Células , RNA Viral/isolamento & purificação , Sêmen/citologia , Sêmen/virologia , Doenças Virais Sexualmente Transmissíveis/virologia , Células Vero , Carga Viral/imunologia , Replicação Viral/imunologia , Zika virus/isolamento & purificação , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
10.
Sci Rep ; 7(1): 2561, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566766

RESUMO

The type I interferon response plays a pivotal role in host defense against infectious agents and tumors, and promising therapeutic approaches rely on small molecules designed to boost this system. To identify such compounds, we developed a high-throughput screening assay based on HEK-293 cells expressing luciferase under the control of Interferon-Stimulated Response Elements (ISRE). An original library of 10,000 synthetic compounds was screened, and we identified a series of 1H-benzimidazole-4-carboxamide compounds inducing the ISRE promoter sequence, specific cellular Interferon-Stimulated Genes (ISGs), and the phosphorylation of Interferon Regulatory Factor (IRF) 3. ISRE induction by ChX710, a prototypical member of this chemical series, was dependent on the adaptor MAVS and IRF1, but was IRF3 independent. Although it was unable to trigger type I IFN secretion per se, ChX710 efficiently primed cellular response to transfected plasmid DNA as assessed by potent synergistic effects on IFN-ß secretion and ISG expression levels. This cellular response was dependent on STING, a key adaptor involved in the sensing of cytosolic DNA and immune activation by various pathogens, stress signals and tumorigenesis. Our results demonstrate that cellular response to cytosolic DNA can be boosted with a small molecule, and potential applications in antimicrobial and cancer therapies are discussed.


Assuntos
Ensaios de Triagem em Larga Escala , Fator Regulador 3 de Interferon/genética , Interferon Tipo I/química , Bibliotecas de Moléculas Pequenas/farmacologia , Citosol/química , DNA/química , DNA/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/antagonistas & inibidores , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Elementos de Resposta/genética , Bibliotecas de Moléculas Pequenas/química , Transfecção
11.
Nat Commun ; 8: 14253, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181493

RESUMO

Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential 'on-off' switch of pDC activity with therapeutic potential.


Assuntos
Aminas/farmacologia , Células Dendríticas/metabolismo , Receptores CXCR4/metabolismo , Compostos de Amônio/química , Animais , Células Dendríticas/efeitos dos fármacos , HIV/efeitos dos fármacos , HIV/fisiologia , Histamina/química , Histamina/farmacologia , Humanos , Imidazóis/farmacologia , Interferon Tipo I/metabolismo , Camundongos , Orthomyxoviridae/fisiologia , Receptores Histamínicos/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia
12.
PLoS Pathog ; 12(2): e1005407, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26871575

RESUMO

Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1ß) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN-α-mediated TRAIL expression at the surface of pDCs and NK cells, and they suggest a novel mechanism of innate control of HIV-1 infection.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Proteína HMGB1/imunologia , Interferon-alfa/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Adulto , Membrana Celular/metabolismo , Quimiocinas/imunologia , Quimiocinas/metabolismo , Estudos de Coortes , Citocinas/imunologia , Citocinas/metabolismo , Citoplasma/metabolismo , Células Dendríticas/virologia , Infecções por HIV/tratamento farmacológico , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Imunidade Inata , Interferon-alfa/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Pessoa de Meia-Idade , Transporte Proteico , Linfócitos T/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adulto Jovem
13.
AIDS ; 30(3): 365-76, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26558721

RESUMO

BACKGROUND: After describing heightened levels of circulating B-cell-activating factor belonging to the tumor necrosis factor superfamily (BAFF) as well as changes in B-cell phenotype and functions during acute infection by simian immunodeficiency virus, we wanted to determine whether and by which cells BAFF was over-expressed in primary HIV-infected (PHI) patients. DESIGN AND METHODS: We simultaneously examined circulating BAFF levels by ELISA and membrane-bound BAFF (mBAFF) expression by flow cytometry in peripheral blood mononuclear cells of healthy donors and PHI patients followed for 6 months. We also examined whether HIV-1 modifies BAFF expression or release in various myeloid cells and plasmacytoid dendritic cells (pDC) in vitro. RESULTS: Circulating BAFF levels were transiently increased at enrolment. They positively correlated with CXCL10 levels and inversely with B-cell counts. Whereas mBAFF was expressed by most pDC and on a fraction of intermediate monocytes in healthy donors, the frequency of mBAFF cells significantly increased among nonclassical monocytes and CD1c dendritic cells but decreased among pDC in PHI patients. In contrast to myeloid cells, pDC never released BAFF upon stimulation. Their mBAFF expression was enhanced by HIV-1, independently of type I IFN. CONCLUSION: Our findings reveal that the pattern of BAFF expression by myeloid cells and pDC is altered in PHI patients and constitutes a valuable marker of immune activation whose circulating levels correlate with CXCL10 levels. Due to their homing in different tissue areas, pDC and myeloid cells might target different B-cell subsets through their mBAFF expression or soluble BAFF release.


Assuntos
Fator Ativador de Células B/biossíntese , Células Dendríticas/imunologia , Infecções por HIV/imunologia , Células Mieloides/imunologia , Adulto , Idoso , Fator Ativador de Células B/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
14.
J Immunol ; 195(11): 5327-36, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519527

RESUMO

Increased IFN-α production contributes to the pathogenesis of infectious and autoimmune diseases. Plasmacytoid dendritic cells (pDCs) from females produce more IFN-α upon TLR7 stimulation than pDCs from males, yet the mechanisms underlying this difference remain unclear. In this article, we show that basal levels of IFN regulatory factor (IRF) 5 in pDCs were significantly higher in females compared with males and positively correlated with the percentage of IFN-α-secreting pDCs. Delivery of recombinant IRF5 protein into human primary pDCs increased TLR7-mediated IFN-α secretion. In mice, genetic ablation of the estrogen receptor 1 (Esr1) gene in the hematopoietic compartment or DC lineage reduced Irf5 mRNA expression in pDCs and IFN-α production. IRF5 mRNA levels furthermore correlated with ESR1 mRNA levels in human pDCs, consistent with IRF5 regulation at the transcriptional level by ESR1. Taken together, these data demonstrate a critical mechanism by which sex differences in basal pDC IRF5 expression lead to higher IFN-α production upon TLR7 stimulation in females and provide novel targets for the modulation of immune responses and inflammation.


Assuntos
Células Dendríticas/imunologia , Fatores Reguladores de Interferon/metabolismo , Interferon-alfa/biossíntese , Caracteres Sexuais , Receptor 7 Toll-Like/metabolismo , Animais , Células Cultivadas , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/farmacologia , Interferon-alfa/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , RNA Mensageiro/biossíntese , Proteínas Recombinantes/farmacologia , Transdução de Sinais/genética
15.
Biol Aujourdhui ; 209(2): 135-44, 2015.
Artigo em Francês | MEDLINE | ID: mdl-26514383

RESUMO

Plasmacytoid dendritic cells (pDCs) represent the first line of host defense against viruses and are an essential link between innate and adaptive immunity. The antiviral factor IFN-α is massively produced by pDCs in response to HIV infection and induces the expression of cellular genes that interfere with viral replication (ISG). Indeed, type I IFN produced by pDCs has a direct anti-viral activity against HIV and has important adjuvant function on other immune cell-types, such as T cells, macrophages and dendritic cells. However, the role of type I IFN in HIV disease is complex and may depend on the stage of the disease. The immunologic hallmark of HIV infection is a status of chronic and progressive immune activation, which drives the immune system to exhaustion and leads to severe immunodeficiency. There is now strong evidence that chronic activation of pDCs may promote HIV pathogenesis and have an impact on adaptive T-cell response. Thus, targeting pDCs and type I IFN may open new therapeutic strategies for chronically activated HIV patients.


Assuntos
Células Dendríticas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunoterapia/métodos , Viroses/terapia , Antígenos de Diferenciação/análise , Citotoxicidade Imunológica , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Endocitose , HIV/fisiologia , Infecções por HIV/imunologia , Humanos , Imunidade Inata , Imunofenotipagem , Interferon-alfa/biossíntese , Interferon-alfa/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Subpopulações de Linfócitos T/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Receptores Toll-Like/imunologia , Viroses/imunologia , Replicação Viral
16.
Chembiochem ; 16(3): 477-86, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25586254

RESUMO

Aminoacyl-tRNAs (aa-tRNAs) participate in a vast repertoire of metabolic pathways, including the synthesis of the peptidoglycan network in the cell walls of bacterial pathogens. Synthesis of aminoacyl-tRNA analogues is critical for further understanding the mechanisms of these reactions. Here we report the semi-synthesis of 3'-fluoro analogues of Ala-tRNA(Ala) . The presence of fluorine in the 3'-position blocks Ala at the 2'-position by preventing spontaneous migration of the residue between positions 2' and 3'. NMR analyses showed that substitution of the 3'-hydroxy group by fluorine in the ribo configuration favours the S-type conformation of the furanose ring of terminal adenosine A76. In contrast, the N-type conformation is favoured by the presence of fluorine in the xylo configuration. Thus, introduction of fluorine in the ribo and xylo configurations affects the conformation of the furanose ring in reciprocal ways. These compounds should provide insight into substrate recognition by Fem transferases and the Ala-tRNA synthetases.


Assuntos
Bioquímica/métodos , Flúor/química , RNA de Transferência de Alanina/química , Técnicas de Química Sintética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Conformação de Ácido Nucleico , RNA Ligase (ATP)/química , RNA de Transferência de Alanina/síntese química , Proteínas Virais/química
18.
Clin Immunol ; 155(1): 17-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25110157

RESUMO

TNF-related apoptosis ligand (TRAIL) induces apoptosis of HIV-1-exposed CD4 T cells expressing the death receptor 5 (DR5) in vitro and has been associated with reduced CD4 T cell number in viremic HIV-1-infected patients. Alterations of the TRAIL/DR5 apoptotic pathway could be involved in the absence of massive CD4 T cell depletion in HIV-1-infected controllers (HIC). We studied here apoptosis of CD4 T cells from HIV-infected progressors and controllers. Reduced apoptosis of CD4 T cells from HIC was observed upon HIV stimulation. This lower apoptosis correlated with a deficiency of DR5 cell surface expression by CD4 T cells upon HIV-1 stimulation. The significant lower apoptosis observed in CD4 T cells after HIV exposure, associated with lower expression of membrane DR5 could explain the better survival of HIV-specific CD4 T cells from HIV controllers. The levels of DR5 cell surface expression on CD4 T cells could represent a new prognostic marker.


Assuntos
Apoptose/fisiologia , Linfócitos T CD4-Positivos/fisiologia , Regulação da Expressão Gênica/imunologia , Infecções por HIV/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adulto , Membrana Celular , HIV/fisiologia , Infecções por HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Viremia
19.
Cancer Lett ; 348(1-2): 88-99, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24657306

RESUMO

FAK and FGFR2 signaling pathways play important roles in cancer development, progression and tumor angiogenesis. PHM16 is a novel ATP competitive inhibitor of FAK and FGFR2. To evaluate the therapeutic efficacy of this agent, we examined its anti-angiogenic effect in HUVEC and its anti-tumor effect in different cancer cell lines. We showed PHM16 inhibited endothelial cell viability, adherence and tube formation along with the added ability to induce endothelial cell apoptosis. This compound significantly delayed tumor cell growth. Together, these data showed that inhibition of both FAK and FGFR2 signaling pathways can enhance anti-tumor and anti-angiogenic activities.


Assuntos
Inibidores da Angiogênese/farmacologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neoplasias/enzimologia , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Inibidores da Angiogênese/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática , Quinase 1 de Adesão Focal/metabolismo , Células HCT116 , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Modelos Moleculares , Neoplasias/patologia , Fosforilação , Inibidores de Proteínas Quinases/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
20.
PLoS Negl Trop Dis ; 7(6): e2257, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23755314

RESUMO

BACKGROUND: Dengue displays a broad spectrum of clinical manifestations that may vary from asymptomatic to severe and even fatal features. Plasma leakage/hemorrhages can be caused by a cytokine storm induced by monocytes and dendritic cells during dengue virus (DENV) replication. Plasmacytoid dendritic cells (pDCs) are innate immune cells and in response to virus exposure secrete IFN-α and express membrane TRAIL (mTRAIL). We aimed to characterize pDC activation in dengue patients and their function under DENV-2 stimulation in vitro. METHODS FINDINGS: Flow cytometry analysis (FCA) revealed that pDCs of mild dengue patients exhibit significantly higher frequencies of mTRAIL compared to severe cases or healthy controls. Plasma levels of IFN-α and soluble TRAIL are increased in mild compared to severe dengue patients, positively correlating with pDC activation. FCA experiments showed that in vitro exposure to DENV-2 induced mTRAIL expression on pDC. Furthermore, three dimension microscopy highlighted that TRAIL was relocalized from intracellular compartment to plasma membrane. Chloroquine treatment inhibited DENV-2-induced mTRAIL relocalization and IFN-α production by pDC. Endosomal viral degradation blockade by chloroquine allowed viral antigens detection inside pDCs. All those data are in favor of endocytosis pathway activation by DENV-2 in pDC. Coculture of pDC/DENV-2-infected monocytes revealed a dramatic decrease of antigen detection by FCA. This viral antigens reduction in monocytes was also observed after exogenous IFN-α treatment. Thus, pDC effect on viral load reduction was mainly dependent on IFN-α production. CONCLUSIONS: This investigation characterizes, during DENV-2 infection, activation of pDCs in vivo and their antiviral role in vitro. Thus, we propose TRAIL-expressing pDCs may have an important role in the outcome of disease.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Vírus da Dengue/imunologia , Interferon-alfa/sangue , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adulto , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA