RESUMO
Lipedema is an often underdiagnosed chronic disorder that affects subcutaneous adipose tissue almost exclusively in women, which leads to disproportionate fat accumulation in the lower and upper body extremities. Common comorbidities include anxiety, depression, and pain. The correlation between mood disorder and subcutaneous fat deposition suggests the involvement of steroids metabolism and neurohormones signaling, however no clear association has been established so far. In this study, we report on a family with three patients affected by sex-limited autosomal dominant nonsyndromic lipedema. They had been screened by whole exome sequencing (WES) which led to the discovery of a missense variant p.(Leu213Gln) in AKR1C1, the gene encoding for an aldo-keto reductase catalyzing the reduction of progesterone to its inactive form, 20-α-hydroxyprogesterone. Comparative molecular dynamics simulations of the wild-type vs. variant enzyme, corroborated by a thorough structural and functional bioinformatic analysis, suggest a partial loss-of-function of the variant. This would result in a slower and less efficient reduction of progesterone to hydroxyprogesterone and an increased subcutaneous fat deposition in variant carriers. Overall, our results suggest that AKR1C1 is the first candidate gene associated with nonsyndromic lipedema.
Assuntos
20-Hidroxiesteroide Desidrogenases/genética , Sequenciamento do Exoma/métodos , Lipedema/genética , Mutação de Sentido Incorreto , 20-Hidroxiesteroide Desidrogenases/química , 20-Hidroxiesteroide Desidrogenases/metabolismo , 20-alfa-Di-Hidroprogesterona/metabolismo , Adulto , Idoso , Feminino , Humanos , Lipedema/metabolismo , Mutação com Perda de Função , Pessoa de Meia-Idade , Modelos Moleculares , Simulação de Dinâmica Molecular , Linhagem , Progesterona/metabolismo , Conformação ProteicaRESUMO
PURPOSE: Recognition of the complex, multidimensional relationship between excess adiposity and cancer control outcomes has motivated the scientific community to seek new research models and paradigms. METHODS: The National Cancer Institute developed an innovative concept to establish a center grant mechanism in nutrition, energetics, and physical activity, referred to as the Transdisciplinary Research on Energetics and Cancer (TREC) Initiative. This paper gives an overview of the 2011-2016 TREC Collaborative Network and the 15 research projects being conducted at the centers. RESULTS: Four academic institutions were awarded TREC center grants in 2011: Harvard University, University of California San Diego, University of Pennsylvania, and Washington University in St. Louis. The Fred Hutchinson Cancer Research Center is the Coordination Center. The TREC research portfolio includes three animal studies, three cohort studies, four randomized clinical trials, one cross-sectional study, and two modeling studies. Disciplines represented by TREC investigators include basic science, endocrinology, epidemiology, biostatistics, behavior, medicine, nutrition, physical activity, genetics, engineering, health economics, and computer science. Approximately 41,000 participants will be involved in these studies, including children, healthy adults, and breast and prostate cancer survivors. Outcomes include biomarkers of cancer risk, changes in weight and physical activity, persistent adverse treatment effects (e.g., lymphedema, urinary and sexual function), and breast and prostate cancer mortality. CONCLUSION: The NIH Science of Team Science group will evaluate the value added by this collaborative science. However, the most important outcome will be whether this transdisciplinary initiative improves the health of Americans at risk of cancer as well as cancer survivors.