Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Clin Cancer Res ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687603

RESUMO

PURPOSE: Endometrial cancer is highly prevalent and lacking non-invasive diagnostic techniques. Diagnosis depends on histological investigation of biopsy samples. Serum biomarkers for endometrial cancer have lacked sensitivity and specificity. The objective of this study was to investigate the cervicovaginal environment to improve understanding of metabolic reprogramming related to endometrial cancer and identify potential biomarker candidates for non-invasive diagnostic and prognostic tests. EXPERIMENTAL DESIGN: Cervicovaginal lavages were collected from 192 participants with endometrial cancer (n=66) and non-malignant conditions (n=108), and global untargeted metabolomics was performed. Using the metabolite data (n=920), we completed a multivariate biomarker discovery analysis. RESULTS: We analyzed grade 1/2 endometrioid carcinoma (n=53) and other endometrial cancer subtypes (n=13) to identify shared and unique metabolic signatures between the subtypes. When compared to non-malignant conditions, downregulation of proline (p<0.0001), tryptophan (p<0.0001), and glutamate (p<0.0001) was found among both endometrial cancer groups, relating to key hallmarks of cancer including immune suppression and redox balance. Upregulation (q<0.05) of sphingolipids, fatty acids, and glycerophospholipids was observed in endometrial cancer in a type-specific manner. Furthermore, cervicovaginal metabolites related to tumor characteristics, including tumor size and myometrial invasion. CONCLUSIONS: Our findings provide insights into understanding the endometrial cancer metabolic landscape and improvement into diagnosis. The metabolic dysregulation described in this paper linked specific metabolites and pathophysiological mechanisms including cellular proliferation, energy supply, and invasion of neighbouring tissues. Furthermore, cervicovaginal metabolite levels related to tumor characteristics, which are used for risk stratification. Overall, development of non-invasive diagnostic can improve both the acceptability and accessibility of diagnosis.

2.
J Epidemiol Glob Health ; 14(2): 480-497, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38407720

RESUMO

BACKGROUND: Latina women experience disproportionately higher rates of HPV infection, persistence, and progression to cervical dysplasia and cancer compared to other racial-ethnic groups. This systematic review explores the relationship between the cervicovaginal microbiome and human papillomavirus infection, cervical dysplasia, and cervical cancer in Latinas. METHODS: The review abides by the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. PubMed, EMBASE, and Scopus databases were searched from January 2000 through November 11, 2022. The review included observational studies reporting on the cervicovaginal microbiota in premenopausal Latina women with human papillomavirus infection, cervical dysplasia, and cervical cancer. RESULTS: Twenty-five articles were eligible for final inclusion (N = 131,183). Forty-two unique bacteria were reported in the cervicovaginal microbiome of Latinas. Seven bacteria: Lactobacillus crispatus, Lactobacillus iners, Chlamydia trachomatis, Prevotella spp., Prevotella amnii, Fusobacterium spp. and Sneathia spp. were enriched across multiple stages of cervical carcinogenesis in Latinas. Therefore, the total number of reported bacteria includes four bacteria associated with the healthy state, 16 bacteria enriched in human papillomavirus outcomes, 24 unique bacteria associated with abnormal cytology/dysplasia, and five bacteria associated with cervical cancer. Furthermore, three studies reported significantly higher alpha and beta diversity in Latinas with cervical dysplasia and cancer compared to controls. Lactobacillus depletion and an increased abundance of L. iners in Latinas compared to non-Latinas, regardless of human papillomavirus status or lesions, were observed. CONCLUSIONS: The identification of 42 unique bacteria and their enrichment in cervical carcinogenesis can guide future cervicovaginal microbiome research to better inform cervical cancer prevention strategies in Latinas.


Assuntos
Hispânico ou Latino , Microbiota , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Vagina , Humanos , Feminino , Infecções por Papillomavirus/etnologia , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/microbiologia , Hispânico ou Latino/estatística & dados numéricos , Vagina/microbiologia , Displasia do Colo do Útero/microbiologia , Displasia do Colo do Útero/virologia , Displasia do Colo do Útero/etnologia , Carcinogênese
3.
AJOG Glob Rep ; 3(4): 100275, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38077226

RESUMO

BACKGROUND: Patients presenting for gynecologic surgery are a heterogeneous group. Preoperative quality of life may be a useful tool to guide postoperative management. OBJECTIVE: This study aimed to examine the key drivers of preoperative quality of life to improve counseling and postoperative management. STUDY DESIGN: This study analyzed preoperative survey results from 154 participants using the following surveys: National Institutes of Health Toolbox Global Health v1.2, Gastrointestinal: Gas and Bloating v1.1 13a, Gastrointestinal: Diarrhea v1.0 6a, and Sexual Function and Satisfaction Brief Profile (Female) v2.0, Perceived Stress Scale, the Vaginal Assessment Scale, and the Vulvar Assessment Scale. Survey results in the form of T-scores were compared in patients with endometrial cancer and patients with benign gynecologic conditions using the Kruskal-Wallis test. The multivariate analysis was performed using linear regression to adjust the comparisons for age, body mass index, and comorbidity. RESULTS: Of the 154 patients, preoperative diagnosis was benign in 66% (n=102) and endometrial cancer in 34% (n=52). Patients with endometrial cancer were more likely to be older, non-White, in lower income brackets, have higher body mass index, and be postmenopausal (P<.05). Although preoperative global health scores were similar between benign and malignant cases (P>.05), when adjusted for age, the differences in global health quality of life between patients with benign gynecologic conditions and those with endometrial cancer became significant, because the endometrial cancer group was older than the benign group (P<.05). However, when adjusting for age, body mass index, and comorbidities (hypertension and diabetes), the differences were no longer significant (P>.05). Sexual interest was decreased in the patients with endometrial cancer both in the unadjusted and adjusted model; and vulvar complaints became significantly different between the groups when controlling for body mass index, age, and comorbidities (P<.05). CONCLUSION: Despite substantial differences in preoperative diagnosis, preoperative quality of life is highly influenced by age, body mass index, and comorbidities. Therefore, these factors should be explored in surgical outcomes and postoperative management trials.

4.
Biomark Res ; 10(1): 88, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461062

RESUMO

BACKGROUND: Rates of endometrial cancer (EC) are increasing. For a definitive diagnosis, women undergo various time-consuming and painful medical procedures, such as endometrial biopsy with or without hysteroscopy, and dilation and curettage, which may create a barrier to early detection and treatment, particularly for women with inadequate healthcare access. Thus, there is a need to develop robust EC diagnostics based on non- or minimally-invasive sampling. The objective of this study was to quantify a broad range of immuno-oncology proteins in cervicovaginal lavage (CVL) samples and investigate these proteins as predictive diagnostic biomarkers for EC. METHODS: One hundred ninety-two women undergoing hysterectomy for benign or malignant indications were enrolled in this cross-sectional study. Classification of women to four disease groups: benign conditions (n = 108), endometrial hyperplasia (n = 18), low-grade endometrioid carcinoma (n = 53) and other EC subtypes (n = 13) was based on histopathology of biopsy samples collected after the surgery. CVL samples were collected in the operating room during the standard-of-care hysterectomy procedure. Concentrations of 72 proteins in CVL samples were evaluated using multiplex immunoassays. Global protein profiles were assessed using principal component and hierarchical clustering analyses. The relationships between protein levels and disease groups and disease severity were determined using Spearman correlation, univariate and multivariate receiver operating characteristics, and logistic regression analyses. RESULTS: Women with EC and benign conditions exhibited distinctive cervicovaginal protein profiles. Several proteins in CVL samples (e.g., an immune checkpoint protein, TIM-3, growth factors, VEGF, TGF-α, and an anti-inflammatory cytokine, IL-10) discriminated EC from benign conditions, particularly, when tested in combinations with CA19-9, CA125, eotaxin, G-CSF, IL-6, MCP-1, MDC, MCP-3 and TRAIL (sensitivity of 86.1% and specificity of 87.9%). Furthermore, specific biomarkers (e.g., TIM-3, VEGF, TGF-α, TRAIL, MCP-3, IL-15, PD-L2, SCF) associated with histopathological tumor characteristics, including histological type and grade, tumor size, presence and depth of myometrial invasion or mismatch repair protein status, implying their potential utility for disease prognosis or monitoring therapies. CONCLUSIONS: This proof-of-principle study demonstrated that cervicovaginal sampling coupled with multiplex immunoassay technology can offer a minimally to non-invasive method for EC detection.

5.
iScience ; 25(12): 105508, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36419846

RESUMO

Adenomyosis is a burdensome gynecologic condition that is associated with pelvic pain, dysmenorrhea, and abnormal uterine bleeding, leading to a negative impact on quality of life; and yet is often left undiagnosed. We recruited 108 women undergoing hysterectomy for benign gynecologic conditions and collected non-invasive cervicovaginal lavage samples for immunometabolic profiling. Patients were grouped according to adenomyosis status. We investigated the levels of 72 soluble immune proteins and >900 metabolites using multiplex immunoassays and an untargeted global metabolomics platform. There were statistically significant alterations in the levels of several immune proteins and a large quantity of metabolites, particularly cytokines related to type II immunity and amino acids, respectively. Enrichment analysis revealed that pyrimidine metabolism, carnitine synthesis, and histidine/histamine metabolism were significantly upregulated pathways in adenomyosis. This study demonstrates utility of non-invasive sampling combined with immunometabolic profiling for adenomyosis detection and a greater pathophysiological understanding of this enigmatic condition.

6.
Med Sci (Basel) ; 10(3)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36135837

RESUMO

Cervical cancer is the 4th most common type of cancer in women world-wide. Many factors play a role in cervical cancer development/progression that include genetics, social behaviors, social determinants of health, and even the microbiome. The prevalence of HPV infections and cervical cancer is high and often understudied among Native American communities. While effective HPV vaccines exist, less than 60% of 13- to 17-year-olds in the general population are up to date on their HPV vaccination as of 2020. Vaccination rates are higher among Native American adolescents, approximately 85% for females and 60% for males in the same age group. Unfortunately, the burden of cervical cancer remains high in many Native American populations. In this paper, we will discuss HPV infection, vaccination and the cervicovaginal microbiome with a Native American perspective. We will also provide insight into new strategies for developing novel methods and therapeutics to prevent HPV infections and limit HPV persistence and progression to cervical cancer in all populations.


Assuntos
Vacinas contra a AIDS , Vacinas contra Influenza , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas contra Vírus Sincicial Respiratório , Vacinas contra a SAIDS , Neoplasias do Colo do Útero , Adolescente , Vacina BCG , Vacina contra Difteria, Tétano e Coqueluche , Feminino , Humanos , Masculino , Vacina contra Sarampo-Caxumba-Rubéola , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/uso terapêutico , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/prevenção & controle , Indígena Americano ou Nativo do Alasca
7.
Commun Biol ; 5(1): 725, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869172

RESUMO

Specific bacteria of the human microbiome influence carcinogenesis at diverse anatomical sites. Bacterial vaginosis (BV) is the most common vaginal disorder in premenopausal women that is associated with gynecologic sequelae, including cervical cancer. BV-associated microorganisms, such as Fusobacterium, Lancefieldella, Peptoniphilus, and Porphyromonas have been associated with gynecologic and other cancers, though the pro-oncogenic mechanisms employed by these bacteria are poorly understood. Here, we integrated a multi-omics approach with our three-dimensional (3-D) cervical epithelial cell culture model to investigate how understudied BV-associated bacteria linked to gynecologic neoplasia influence hallmarks of cancer in vitro. Lancefieldella parvulum and Peptoniphilus lacrimalis elicited robust proinflammatory responses in 3-D cervical cells. Fusobacterium nucleatum and Fusobacterium gonidiaformans modulated metabolic hallmarks of cancer corresponding to accumulation of 2-hydroxyglutarate, pro-inflammatory lipids, and signs of oxidative stress and genotoxic hydrogen sulfide. This study provides mechanistic insights into how gynecologic cancer-associated bacteria might facilitate a tumor-promoting microenvironment in the human cervix.


Assuntos
Bactérias/classificação , Colo do Útero/microbiologia , Microbiota , Neoplasias do Colo do Útero/etiologia , Vaginose Bacteriana/microbiologia , Bactérias/patogenicidade , Colo do Útero/citologia , Feminino , Humanos , Microambiente Tumoral , Neoplasias do Colo do Útero/microbiologia , Vaginose Bacteriana/complicações , Vaginose Bacteriana/imunologia , Vaginose Bacteriana/metabolismo
8.
mSystems ; 7(2): e0006422, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35343798

RESUMO

While the link between the cervicovaginal bacterial microbiome, human papillomavirus (HPV) infection, and cervical cancer is recognized (P. Laniewski, D. Barnes, A. Goulder, H. Cui, et al., Sci. Rep. 8:7593, 2018, http://dx.doi.org/10.1038/s41598-018-25879-7; A. Mitra, D. A. MacIntyre, Y. S. Lee, A. Smith, et al., Sci. Rep. 5:16865, 2015, http://dx.doi.org/10.1038/srep16865; A. Mitra, D. A. MacIntyre, J. R. Marchesi, Y. S. Lee, et al., Microbiome 4:58, 2016, http://dx.doi.org/10.1186/s40168-016-0203-0; J. Norenhag, J. Du, M. Olovsson, H. Verstraelen, et al., BJOG, 127:171-180, 2020, http://dx.doi.org/10.1111/1471-0528.15854; E. O. Dareng, B. Ma, A. O. Famooto, S. N. Adebamowo, et al., Epidemiol. Infect. 144:123-137, 2016, http://dx.doi.org/10.1017/S0950268815000965; A. Audirac-Chalifour, K. Torres-Poveda, M. Bahena-Roman, J. Tellez-Sosa et al., PLoS One 11:e0153274, 2016, http://dx.doi.org/10.1371/journal.pone.0153274; M. Di Paola, C. Sani, A. M. Clemente, A. Iossa, et al., Sci. Rep. 7:10200, 2017, http://dx.doi.org/10.1038/s41598-017-09842-6), the role of the cervicovaginal virome remains poorly understood. In this pilot study, we conducted metagenomic next-generation sequencing of cervicovaginal lavage specimens to investigate the relationship between the cervicovaginal DNA virome, bacterial microbiome, genital inflammation, and HPV infection. Specific virome alterations were associated with features of the local microenvironment related to HPV persistence and progression to cervical cancer. Cervicovaginal viromes clustered distinctly by genital inflammation state. Genital inflammation was associated with decreased virome richness and alpha diversity and an increased abundance of Anelloviridae species from the genus Alphatorquevirus. Lactobacillus bacteriophages were closely associated with increased Lactobacillus abundance, consistent with phage-host relationships. Interestingly, bacteria-bacteriophage transkingdom interactions were linked to genital inflammation and showed specific interactions with bacterial vaginosis-associated bacteria, including Gardnerella, Prevotella, and Sneathia. Taken together, our results reveal prominent virome interactions with features of the cervicovaginal microenvironment that are associated with HPV and cervical cancer. These findings expand our understanding of the cervicovaginal host-microbiome interactions in women's health. IMPORTANCE HPV infection is an established risk factor for cervical cancer. However, more broadly, the role of the cervicovaginal virome in cervical cancer progression is not well understood. Here, we identified cervicovaginal DNA virome alterations associated with local microenvironment factors (vaginal microbiota and genital inflammation) that influence HPV persistence and progression to cervical cancer. These findings indicate that the cervicovaginal virome plays an important role in women's health.


Assuntos
Bacteriófagos , Microbiota , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Viroma , Infecções por Papillomavirus/microbiologia , Projetos Piloto , Colo do Útero/microbiologia , Inflamação , DNA , Microambiente Tumoral
9.
PLoS Comput Biol ; 18(2): e1009876, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35196323

RESUMO

Emerging evidence suggests that host-microbe interaction in the cervicovaginal microenvironment contributes to cervical carcinogenesis, yet dissecting these complex interactions is challenging. Herein, we performed an integrated analysis of multiple "omics" datasets to develop predictive models of the cervicovaginal microenvironment and identify characteristic features of vaginal microbiome, genital inflammation and disease status. Microbiomes, vaginal pH, immunoproteomes and metabolomes were measured in cervicovaginal specimens collected from a cohort (n = 72) of Arizonan women with or without cervical neoplasm. Multi-omics integration methods, including neural networks (mmvec) and Random Forest supervised learning, were utilized to explore potential interactions and develop predictive models. Our integrated analyses revealed that immune and cancer biomarker concentrations were reliably predicted by Random Forest regressors trained on microbial and metabolic features, suggesting close correspondence between the vaginal microbiome, metabolome, and genital inflammation involved in cervical carcinogenesis. Furthermore, we show that features of the microbiome and host microenvironment, including metabolites, microbial taxa, and immune biomarkers are predictive of genital inflammation status, but only weakly to moderately predictive of cervical neoplastic disease status. Different feature classes were important for prediction of different phenotypes. Lipids (e.g. sphingolipids and long-chain unsaturated fatty acids) were strong predictors of genital inflammation, whereas predictions of vaginal microbiota and vaginal pH relied mostly on alterations in amino acid metabolism. Finally, we identified key immune biomarkers associated with the vaginal microbiota composition and vaginal pH (MIF), as well as genital inflammation (IL-6, IL-10, MIP-1α).


Assuntos
Metaboloma , Microbiota , Biomarcadores Tumorais , Carcinogênese , Feminino , Humanos , Inflamação , Microambiente Tumoral , Vagina
10.
NPJ Biofilms Microbiomes ; 7(1): 88, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903740

RESUMO

Bacterial vaginosis (BV) is an enigmatic polymicrobial condition characterized by a depletion of health-associated Lactobacillus and an overgrowth of anaerobes. Importantly, BV is linked to adverse gynecologic and obstetric outcomes: an increased risk of sexually transmitted infections, preterm birth, and cancer. We hypothesized that members of the cervicovaginal microbiota distinctly contribute to immunometabolic changes in the human cervix, leading to these sequelae. Our 3D epithelial cell model that recapitulates the human cervical epithelium was infected with clinical isolates of cervicovaginal bacteria, alone or as a polymicrobial community. We used Lactobacillus crispatus as a representative health-associated commensal and four common BV-associated species: Gardnerella vaginalis, Prevotella bivia, Atopobium vaginae, and Sneathia amnii. The immunometabolic profiles of these microenvironments were analyzed using multiplex immunoassays and untargeted global metabolomics. A. vaginae and S. amnii exhibited the highest proinflammatory potential through induction of cytokines, iNOS, and oxidative stress-associated compounds. G. vaginalis, P. bivia, and S. amnii distinctly altered physicochemical barrier-related proteins and metabolites (mucins, sialic acid, polyamines), whereas L. crispatus produced an antimicrobial compound, phenyllactic acid. Alterations to the immunometabolic landscape correlate with symptoms and hallmarks of BV and connected BV with adverse women's health outcomes. Overall, this study demonstrated that 3D cervical epithelial cell colonized with cervicovaginal microbiota faithfully reproduce the immunometabolic microenvironment previously observed in clinical studies and can successfully be used as a robust tool to evaluate host responses to commensal and pathogenic bacteria in the female reproductive tract.


Assuntos
Nascimento Prematuro , Vaginose Bacteriana , Bactérias , Colo do Útero , Feminino , Gardnerella vaginalis , Humanos , Recém-Nascido
11.
Hum Reprod Update ; 28(1): 92-131, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34718567

RESUMO

BACKGROUND: Endometriosis is a chronic, burdensome condition that is historically understudied. Consequently, there is a lack of understanding of the etiology of the disease and its associated symptoms, including infertility and chronic pelvic pain (CPP). Endometriosis development is influenced by estrogen metabolism and inflammation, which are modulated by several factors including the microbiome and the estrobolome (the collection of genes encoding estrogen-metabolizing enzymes in the gut microbiome). Therefore, there is increasing interest in understanding the role of microbiota in endometriosis etiology. OBJECTIVE AND RATIONALE: To date, there is no cure for endometriosis and treatment options often are ineffective. This manuscript will review the potential relationship between the microbiome and endometriosis, infertility and CPP and highlight the available data on the microbiome in relation to endometriosis and its related symptoms. The overarching goal of this manuscript is to inform future microbiome research that will lead to a deeper understanding of the etiology of the disease and possible diagnostic modalities and treatments. The potential impact of the microbiome on estrogen regulation modulated by the estrobolome, as well as inflammation and other endometriosis-promoting mechanisms within the genital tract, will be reviewed. The methodological limitations of microbiome-related studies will be critically assessed to provide improved guidelines for future microbiome and clinical studies. SEARCH METHODS: PubMed databases were searched using the following keywords: endometriosis AND microbiome, infertility AND microbiome, pelvic pain AND microbiome, IVF (in-vitro fertilization) AND microbiome, endometriosis AND infertility. Clinical and preclinical animal trials that were eligible for review, and related to microbiome and endometriosis, infertility or CPP were included. All available manuscripts were published in 2002-2021. OUTCOMES: In total, 28 clinical and 6 animal studies were included in the review. In both human and animal studies, bacteria were enriched in endometriosis groups, although there was no clear consensus on specific microbiota compositions that were associated with endometriosis, and no studies included infertility or CPP with endometriosis. However, bacterial vaginosis-associated bacteria and Lactobacillus depletion in the cervicovaginal microbiome were associated with endometriosis and infertility in the majority (23/28) of studies. Interpretation of endometrial studies is limited owing to a variety of methodological factors, discussed in this review. In addition, metadata outlining antibiotic usage, age, race/ethnicity, menopausal status and timing of sample collection in relation to diagnosis of endometriosis was not consistently reported. Animal studies (6/6) support a bidirectional relationship between the gut microbiota and endometriosis onset and progression. WIDER IMPLICATIONS: There is evidence that a dysbiotic gut or genital microbiota is associated with multiple gynecologic conditions, with mounting data supporting an association between the microbiome and endometriosis and infertility. These microbiomes likely play a role in the gut-brain axis, which further supports a putative association with the spectrum of symptoms associated with endometriosis, including infertility and CPP. Collectively, this review highlights the demand for more rigorous and transparent methodology and controls, consistency across the field, and inclusion of key demographic and clinical characteristics of disease and comparison participants. Rigorous study designs will allow for a better understanding of the potential role of the microbiome in endometriosis etiology and the relationship to other disorders of the female reproductive tract.


Assuntos
Endometriose , Infertilidade , Microbiota , Animais , Endometriose/complicações , Endometriose/microbiologia , Endométrio , Feminino , Humanos , Infertilidade/etiologia , Dor Pélvica/etiologia
12.
Curr Oncol ; 28(5): 3705-3716, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34590604

RESUMO

Despite a global and nationwide decrease, Native Americans continue to experience high rates of cancer morbidity and mortality. Vaccination is one approach to decrease cancer incidence such as the case of cervical cancer. However, the availability of vaccines does not guarantee uptake, as evident in the Coronavirus 2019 pandemic. Therefore, as we consider current and future cancer vaccines, there are certain considerations to be mindful of to increase uptake among Native Americans such as the incidence of disease, social determinants of health, vaccine hesitancy, and historical exclusion in clinical trials. This paper primarily focuses on human papillomavirus (HPV) and potential vaccines for Native Americans. However, we also aim to inform researchers on factors that influence Native American choices surrounding vaccination and interventions including cancer therapies. We begin by providing an overview of the historical distrust and trauma Native Americans experience, both past and present. In addition, we offer guidance and considerations when engaging with sovereign Tribal Nations in vaccine development and clinical trials in order to increase trust and encourage vaccine uptake.


Assuntos
Vacinas Anticâncer , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Infecções por Papillomavirus/prevenção & controle , Neoplasias do Colo do Útero/prevenção & controle , Indígena Americano ou Nativo do Alasca
13.
NPJ Biofilms Microbiomes ; 7(1): 57, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230496

RESUMO

Bacterial vaginosis (BV) is a gynecologic disorder characterized by a shift in cervicovaginal microbiota from Lactobacillus spp. dominance to a polymicrobial biofilm composed of diverse anaerobes. We utilized a well-characterized human three-dimensional cervical epithelial cell model in conjunction with untargeted metabolomics and immunoproteomics analyses to determine the immunometabolic contribution of three members of the Veillonellaceae family: Veillonella atypica, Veillonella montpellierensis and Megasphaera micronuciformis at this site. We found that Veillonella spp. infections induced significant elevation of polyamines. M. micronuciformis infections significantly increased soluble inflammatory mediators, induced moderate levels of cell cytotoxicity, and accumulation of cell membrane lipids relative to Veillonella spp. Notably, both V. atypica and V. montpellierensis infections resulted in consumption of lactate, a key metabolite linked to gynecologic and reproductive health. Collectively our approach and data provide unique insights into the specific contributions of Veillonellaceae members to the pathogenesis of BV and women's health.


Assuntos
Metabolismo Energético , Mucosa/metabolismo , Mucosa/microbiologia , Vagina/metabolismo , Vagina/microbiologia , Veillonellaceae/fisiologia , Aminoácidos/metabolismo , Técnicas de Cultura de Células , Biologia Computacional/métodos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Metabolismo dos Lipídeos , Metaboloma , Metabolômica/métodos , Vaginose Bacteriana/metabolismo , Vaginose Bacteriana/microbiologia
14.
Sex Transm Dis ; 48(1): 63-70, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32842049

RESUMO

BACKGROUND: Vaginal lubricants are commonly used during gynecological examinations, during sexual activities, or to alleviate vaginal dryness. Many lubricants contain potentially bacteriostatic or bactericidal agents (parabens, chlorhexidine gluconate, nonoxynol-9). Our objective was to evaluate the impact of lubricants that vary in formulation on the growth and viability of vaginal Lactobacillus species and vaginal epithelial cell (VEC) colonization in an in vitro model. METHODS: Growth curve, disk diffusion, and minimal inhibitory assays were used to determine the impact of lubricants or excipients on the growth of Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii, and Lactobacillus iners. L. crispatus strain was used in VEC colonization assays. Statistical differences were determined by analysis of variance. RESULTS: Lubricants containing chlorhexidine gluconate or nonoxynol-9 (N-9; Conceptrol, K-Y Jelly, and Surgilube) significantly inhibited Lactobacillus species growth (P < 0.05). In contrast, other clinical lubricants (E-Z Lubricating Jelly, McKesson Lubricating) and personal lubricants (Astroglide Liquid, Good Clean Love Almost Naked, K-Y Warming Jelly) did not exhibit this effect. Chlorhexidine gluconate had a detrimental effect on Lactobacillus growth and exhibited stronger antimicrobial activity compared with methylparaben and propylparaben (P < 0.0001). There were lubricants that did not induce cytotoxicity in VEC (Good Clean Love Almost Naked, E-Z Lubricating Jelly, McKesson Lubricating Jelly), but these products did substantially decrease the attachment of L. crispatus to VEC, particularly when VEC were preexposed to lubricants before inoculation with bacteria (P < 0.0001). CONCLUSIONS: This in vitro model indicates that select vaginal lubricants, particularly those with chlorhexidine gluconate, have potentially adverse effects on women's health by reducing growth and recolonization of vaginal Lactobacillus species.


Assuntos
Lactobacillus , Lubrificantes , Células Epiteliais , Feminino , Humanos , Vagina
15.
Front Cell Infect Microbiol ; 11: 759697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004344

RESUMO

The cervicovaginal microbiome plays an important role in protecting women from dysbiosis and infection caused by pathogenic microorganisms. In healthy reproductive-age women the cervicovaginal microbiome is predominantly colonized by protective Lactobacillus spp. The loss of these protective bacteria leads to colonization of the cervicovaginal microenvironment by pathogenic microorganisms resulting in dysbiosis and bacterial vaginosis (BV). Mobiluncus mulieris and Eggerthella sp. are two of the many anaerobes that can contribute to BV, a condition associated with multiple adverse obstetric and gynecological outcomes. M. mulieris has been linked to high Nugent scores (relating to BV morphotypes) and preterm birth (PTB), whilst some bacterial members of the Eggerthellaceae family are highly prevalent in BV, and identified in ~85-95% of cases. The functional impact of M. mulieris and Eggerthella sp. in BV is still poorly understood. To determine the individual immunometabolic contributions of Eggerthella sp. and M. mulieris within the cervicovaginal microenvironment, we utilized our well-characterized human three-dimensional (3-D) cervical epithelial cell model in combination with multiplex immunoassays and global untargeted metabolomics approaches to identify key immune mediators and metabolites related to M. mulieris and Eggerthella sp. infections. We found that infection with M. mulieris significantly elevated multiple proinflammatory markers (IL-6, IL-8, TNF-α and MCP-1) and altered metabolites related to energy metabolism (nicotinamide and succinate) and oxidative stress (cysteinylglycine, cysteinylglycine disulfide and 2-hydroxygluatrate). Eggerthella sp. infection significantly elevated multiple sphingolipids and glycerolipids related to epithelial barrier function, and biogenic amines (putrescine and cadaverine) associated with elevated vaginal pH, vaginal amine odor and vaginal discharge. Our study elucidated that M. mulieris elevated multiple proinflammatory markers relating to PTB and STI acquisition, as well as altered energy metabolism and oxidative stress, whilst Eggerthella sp. upregulated multiple biogenic amines associated with the clinical diagnostic criteria of BV. Future studies are needed to evaluate how these bacteria interact with other BV-associated bacteria within the cervicovaginal microenvironment.


Assuntos
Microbiota , Nascimento Prematuro , Vaginose Bacteriana , Feminino , Humanos , Recém-Nascido , Mobiluncus , Gravidez , Vagina
16.
Curr Protoc Microbiol ; 59(1): e129, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33232584

RESUMO

Human papillomavirus (HPV) infection occurs in differentiating epithelial tissues. Cancers caused by high-risk types (e.g., HPV16 and HPV18) typically occur at oropharyngeal and anogenital anatomical sites. The HPV life cycle is differentiation-dependent, requiring tissue culture methodology that is able to recapitulate the three-dimensional (3D) stratified epithelium. Here we report two distinct and complementary methods for growing differentiating epithelial tissues that mimic many critical morphological and biochemical aspects of in vivo tissue. The first approach involves growing primary human epithelial cells on top of a dermal equivalent consisting of collagen fibers and living fibroblast cells. When these cells are grown at the liquid-air interface, differentiation occurs and allows for epithelial stratification. The second approach uses a rotating wall vessel bioreactor. The low-fluid-shear microgravity environment inside the bioreactor allows the cells to use collagen-coated microbeads as a growth scaffold and self-assemble into 3D cellular aggregates. These approaches are applied to epithelial cells derived from HPV-positive and HPV-negative oral and cervical tissues. The second part of the article introduces potential downstream applications for these 3D tissue models. We describe methods that will allow readers to start successfully culturing 3D tissues from oral and cervical cells. These tissues have been used for microscopic visualization, scanning electron microscopy, and large omics-based studies to gain insights into epithelial biology, the HPV life cycle, and host-pathogen interactions. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Establishing human primary cell-derived 3D organotypic raft cultures Support Protocol 1: Isolation of epithelial cells from patient-derived tissues Support Protocol 2: Growth and maintenance of primary human epithelial cells in monolayer culture Support Protocol 3: PCR-based HPV screening of primary cell cultures Basic Protocol 2: Establishing human 3D cervical tissues using the rotating wall vessel bioreactor Support Protocol 4: Growth and maintenance of human A2EN cells in monolayer culture Support Protocol 5: Preparation of the slow-turning lateral vessel bioreactor Support Protocol 6: Preparation of Cytodex-3 microcarrier beads Basic Protocol 3: Histological assessment of 3D organotypic raft tissues Basic Protocol 4: Spatial analysis of protein expression in 3D organotypic raft cultures Basic Protocol 5: Immunofluorescence imaging of RWV-derived 3D tissues Basic Protocol 6: Ultrastructural visualization and imaging of RWV-derived 3D tissues Basic Protocol 7: Characterization of gene expression by RT-qPCR.


Assuntos
Técnicas de Cultura de Células/métodos , Interações Hospedeiro-Patógeno , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Colágeno , Epitélio/virologia , Fibroblastos , Expressão Gênica , Humanos , Queratinócitos/patologia , Queratinócitos/virologia , Boca/patologia , Papillomaviridae/genética
17.
NPJ Precis Oncol ; 4: 22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802959

RESUMO

Emerging evidence suggests that the vaginal microbiota play a role in HPV persistence and cervical neoplasia development and progression. Here we examine a broad range of immune checkpoint proteins in the cervicovaginal microenvironment across cervical carcinogenesis and explore relationships among these key immunoregulatory proteins, the microbiota composition, and genital inflammation. First, we demonstrate that immune checkpoint molecules can be measured in cervicovaginal lavages. Secondly, we identify CD40, CD27, and TIM-3 to specifically discriminate cervical cancer from other groups and CD40, CD28, and TLR2 to positively correlate to genital inflammation. Finally, PD-L1 and LAG-3 levels negatively, whereas TLR2 positively correlate to health-associated Lactobacillus dominance. Overall, our study identifies immune checkpoint signatures associated with cervical neoplasm and illuminates the multifaceted microbiota-host immunity network in the local microenvironment. This study provides a foundation for future mechanistic studies and highlights the utility of cervicovaginal lavage profiling for predicting and monitoring response to cancer therapy.

18.
J Infect Dis ; 222(12): 2082-2092, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32515473

RESUMO

BACKGROUND: Prevotella species are commonly isolated from the reproductive tract of women with obstetric/gynecologic health complications. However, contributions of this genus to changes in local microenvironment are not well characterized. Our objective was to evaluate species-specific effects of Prevotella on the human endometrial epithelium. METHODS: Thirteen Prevotella strains, originally isolated from the human oral cavity, amniotic fluid, endometrium, or vagina (including women with bacterial vaginosis), were obtained from BEI and ATCC resources. Bacteria were evaluated in silico and in vitro using human endometrial epithelial cells (EEC) grown as monolayers or a 3-dimensional (3D) model. RESULTS: Genomic characterization illustrated metabolic and phylogenetic diversity of Prevotella genus. Among tested species, P. disiens exhibited cytotoxicity. Scanning electron microscopy analysis of the 3D EEC model revealed species-specific colonization patterns and alterations of ultracellular structures. Infection with sialidase-producing P. timonensis resulted in elongated microvilli, and increased MUC3 and MUC4 expression. Infections with Prevotella species, including P. bivia, did not result in significant proinflammatory activation of EEC. CONCLUSIONS: Collectively, findings indicate that Prevotella species are metabolically diverse and overall not cytotoxic or overtly inflammatory in EEC; however, these bacteria can form biofilms, alter barrier properties of the endometrial epithelium, and ultimately impact colonization of secondary colonizers.


Assuntos
Células Epiteliais/microbiologia , Imunidade Inata , Prevotella/genética , Prevotella/patogenicidade , Linhagem Celular Tumoral , Endométrio/citologia , Células Epiteliais/imunologia , Feminino , Humanos , Microscopia Eletrônica de Varredura , Mucinas/genética , Prevotella/imunologia , Especificidade da Espécie
19.
Nat Rev Urol ; 17(4): 232-250, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32071434

RESUMO

The female reproductive tract (FRT), similar to other mucosal sites, harbours a site-specific microbiome, which has an essential role in maintaining health and homeostasis. In the majority of women of reproductive age, the microbiota of the lower FRT (vagina and cervix) microenvironment is dominated by Lactobacillus species, which benefit the host through symbiotic relationships. By contrast, the upper FRT (uterus, Fallopian tubes and ovaries) might be sterile in healthy individuals or contain a low-biomass microbiome with a diverse mixture of microorganisms. When dysbiosis occurs, altered immune and metabolic signalling can affect hallmarks of cancer, including chronic inflammation, epithelial barrier breach, changes in cellular proliferation and apoptosis, genome instability, angiogenesis and metabolic dysregulation. These pathophysiological changes might lead to gynaecological cancer. Emerging evidence shows that genital dysbiosis and/or specific bacteria might have an active role in the development and/or progression and metastasis of gynaecological malignancies, such as cervical, endometrial and ovarian cancers, through direct and indirect mechanisms, including modulation of oestrogen metabolism. Cancer therapies might also alter microbiota at sites throughout the body. Reciprocally, microbiota composition can influence the efficacy and toxic effects of cancer therapies, as well as quality of life following cancer treatment. Modulation of the microbiome via probiotics or microbiota transplant might prove useful in improving responsiveness to cancer treatment and quality of life. Elucidating these complex host-microbiome interactions, including the crosstalk between distal and local sites, will translate into interventions for prevention, therapeutic efficacy and toxic effects to enhance health outcomes for women with gynaecological cancers.


Assuntos
Carcinogênese , Disbiose/microbiologia , Neoplasias dos Genitais Femininos/microbiologia , Genitália Feminina/microbiologia , Microbiota/fisiologia , Anti-Infecciosos/uso terapêutico , Bactérias Anaeróbias , Colo do Útero/microbiologia , Disbiose/metabolismo , Estrogênios/metabolismo , Tubas Uterinas/microbiologia , Feminino , Microbioma Gastrointestinal , Neoplasias dos Genitais Femininos/metabolismo , Neoplasias dos Genitais Femininos/prevenção & controle , Neoplasias dos Genitais Femininos/terapia , Genitália Feminina/metabolismo , Humanos , Lactobacillus , Ovário/microbiologia , Probióticos/uso terapêutico , Útero/microbiologia , Vagina/microbiologia
20.
J Infect Dis ; 221(6): 983-988, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31586390

RESUMO

In recent studies, the interleukin (IL)-36 cytokines were shown to be elevated in women with non-Lactobacillus-dominated vaginal microbiomes. In this study, we evaluated IL36G expression in clinical samples from women with and without bacterial vaginosis (BV) and a human 3-dimensional cervical epithelial cell model. IL36G expression was significantly elevated in cervicovaginal epithelial cells isolated from BV-positive women and corresponded with increased neutrophil counts relative to BV-negative women. In addition, specific BV-associated bacterial species as well as a polymicrobial cocktail significantly induced IL36G expression in vitro. These findings suggest that IL-36γ may exhibit an important function in the host response to BV and other sexually transmitted infections.


Assuntos
Células Epiteliais/metabolismo , Interleucina-1/metabolismo , Vaginose Bacteriana/metabolismo , Adulto , Bactérias , Células Cultivadas , Colo do Útero , Células Epiteliais/microbiologia , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-1/genética , Neutrófilos , Vagina/citologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA