Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NAR Cancer ; 6(2): zcae021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774470

RESUMO

Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. To identify genes differentially required for the viability of GBM stem-like cells (GSCs), we performed functional genomic lethality screens comparing GSCs and control human neural stem cells. Among top-scoring hits in a subset of GBM cells was the F-box-containing gene FBXO42, which was also predicted to be essential in ∼15% of cell lines derived from a broad range of cancers. Mechanistic studies revealed that, in sensitive cells, FBXO42 activity prevents chromosome alignment defects, mitotic cell cycle arrest and cell death. The cell cycle arrest, but not the cell death, triggered by FBXO42 inactivation could be suppressed by brief exposure to a chemical inhibitor of Mps1, a key spindle assembly checkpoint (SAC) kinase. FBXO42's cancer-essential function requires its F-box and Kelch domains, which are necessary for FBXO42's substrate recognition and targeting by SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex. However, none of FBXO42's previously proposed targets, including ING4, p53 and RBPJ, were responsible for the observed phenotypes. Instead, our results suggest that FBOX42 alters the activity of one or more proteins that perturb chromosome-microtubule dynamics in cancer cells, which in turn leads to induction of the SAC and cell death.

2.
bioRxiv ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36711964

RESUMO

Background: Adult and pediatric tumors display stark differences in their mutation spectra and chromosome alterations. Here, we attempted to identify common and unique gene dependencies and their associated biomarkers among adult and pediatric tumor isolates using functional genetic lethal screens and computational modeling. Methods: We performed CRISRP-Cas9 lethality screens in two adult glioblastoma (GBM) tumor isolates and five pediatric brain tumor isolates representing atypical teratoid rhabdoid tumors (ATRT), diffuse intrinsic pontine glioma, GBM, and medulloblastoma. We then integrated the screen results with machine learning-based gene-dependency models generated from data from >900 cancer cell lines. Results: We found that >50% of candidate dependencies of 280 identified were shared between adult GBM tumors and individual pediatric tumor isolates. 68% of screen hits were found as nodes in our network models, along with shared and tumor-specific predictors of gene dependencies. We investigated network predictors associated with ADAR, EFR3A, FGFR1 (pediatric-specific), and SMARCC2 (ATRT-specific) gene dependency among our tumor isolates. Conclusions: The results suggest that, despite harboring disparate genomic signatures, adult and pediatric tumor isolates share a preponderance of genetic dependences. Further, combining data from primary brain tumor lethality screens with large cancer cell line datasets produced valuable insights into biomarkers of gene dependency, even for rare cancers. Importance of the Study: Our results demonstrate that large cancer cell lines data sets can be computationally mined to identify known and novel gene dependency relationships in adult and pediatric human brain tumor isolates. Gene dependency networks and lethality screen results represent a key resource for neuro-oncology and cancer research communities. We also highlight some of the challenges and limitations of this approach.

3.
Proc Natl Acad Sci U S A ; 119(41): e2208255119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191188

RESUMO

Aneuploidy, the incorrect number of whole chromosomes, is a common feature of tumors that contributes to their initiation and evolution. Preventing aneuploidy requires properly functioning kinetochores, which are large protein complexes assembled on centromeric DNA that link mitotic chromosomes to dynamic spindle microtubules and facilitate chromosome segregation. The kinetochore leverages at least two mechanisms to prevent aneuploidy: error correction and the spindle assembly checkpoint (SAC). BubR1, a factor involved in both processes, was identified as a cancer dependency and therapeutic target in multiple tumor types; however, it remains unclear what specific oncogenic pressures drive this enhanced dependency on BubR1 and whether it arises from BubR1's regulation of the SAC or error-correction pathways. Here, we use a genetically controlled transformation model and glioblastoma tumor isolates to show that constitutive signaling by RAS or MAPK is necessary for cancer-specific BubR1 vulnerability. The MAPK pathway enzymatically hyperstimulates a network of kinetochore kinases that compromises chromosome segregation, rendering cells more dependent on two BubR1 activities: counteracting excessive kinetochore-microtubule turnover for error correction and maintaining the SAC. This work expands our understanding of how chromosome segregation adapts to different cellular states and reveals an oncogenic trigger of a cancer-specific defect.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Aneuploidia , Carcinogênese/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/genética , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático/metabolismo
4.
Cancer Res ; 77(20): 5518-5529, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28855212

RESUMO

Glioblastoma multiforme (GBM) remains a mainly incurable disease in desperate need of more effective treatments. In this study, we develop evidence that the mitotic spindle checkpoint molecule BUB1B may offer a predictive marker for aggressiveness and effective drug response. A subset of GBM tumor isolates requires BUB1B to suppress lethal kinetochore-microtubule attachment defects. Using gene expression data from GBM stem-like cells, astrocytes, and neural progenitor cells that are sensitive or resistant to BUB1B inhibition, we created a computational framework to predict sensitivity to BUB1B inhibition. Applying this framework to tumor expression data from patients, we stratified tumors into BUB1B-sensitive (BUB1BS) or BUB1B-resistant (BUB1BR) subtypes. Through this effort, we found that BUB1BS patients have a significantly worse prognosis regardless of tumor development subtype (i.e., classical, mesenchymal, neural, proneural). Functional genomic profiling of BUB1BR versus BUB1BS isolates revealed a differential reliance of genes enriched in the BUB1BS classifier, including those involved in mitotic cell cycle, microtubule organization, and chromosome segregation. By comparing drug sensitivity profiles, we predicted BUB1BS cells to be more sensitive to type I and II topoisomerase inhibitors, Raf inhibitors, and other drugs, and experimentally validated some of these predictions. Taken together, the results show that our BUB1BR/S classification of GBM tumors can predict clinical course and sensitivity to drug treatment. Cancer Res; 77(20); 5518-29. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Glioblastoma/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral/metabolismo , Etoposídeo/farmacologia , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Irinotecano , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética
5.
Oncotarget ; 8(30): 48545-48562, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28596487

RESUMO

Zinc finger domain genes comprise ~3% of the human genome, yet many of their functions remain unknown. Here we investigated roles for the vertebrate-specific BTB domain zinc finger gene ZNF131 in the context of human brain tumors. We report that ZNF131 is broadly required for Glioblastoma stem-like cell (GSC) viability, but dispensable for neural progenitor cell (NPC) viability. Examination of gene expression changes after ZNF131 knockdown (kd) revealed that ZNF131 activity notably promotes expression of Joubert Syndrome ciliopathy genes, including KIF7, NPHP1, and TMEM237, as well as HAUS5, a component of Augmin/HAUS complex that facilitates microtubule nucleation along the mitotic spindle. Of these genes only kd of HAUS5 displayed GSC-specific viability loss. Critically, HAUS5 ectopic expression was sufficient to suppress viability defects of ZNF131 kd cells. Moreover, ZNF131 and HAUS5 kd phenocopied each other in GSCs, each causing: mitotic arrest, centrosome fragmentation, loss of Augmin/HAUS complex on the mitotic spindle, and loss of GSC self-renewal and tumor formation capacity. In control NPCs, we observed centrosome fragmentation and lethality only when HAUS5 kd was combined with kd of HAUS2 or HAUS4, demonstrating that the complex is essential in NPCs, but that GSCs have heightened requirement. Our results suggest that GSCs differentially rely on ZNF131-dependent expression of HAUS5 as well as the Augmin/HAUS complex activity to maintain the integrity of centrosome function and viability.


Assuntos
Neoplasias Encefálicas/genética , Centrossomo/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Ligação Proteica , Fuso Acromático/metabolismo , Fatores de Transcrição/metabolismo
6.
Mol Biol Cell ; 28(15): 2035-2041, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28539402

RESUMO

Aneuploidy, a condition that results from unequal partitioning of chromosomes during mitosis, is a hallmark of many cancers, including those caused by human papillomaviruses (HPVs). E6 and E7 are the primary transforming proteins in HPV that drive tumor progression. In this study, we stably expressed E6 and E7 in noncancerous RPE1 cells and analyzed the specific mitotic defects that contribute to aneuploidy in each cell line. We find that E6 expression results in multiple chromosomes associated with one or both spindle poles, causing a significant mitotic delay. In most cells, the misaligned chromosomes eventually migrated to the spindle equator, leading to mitotic exit. In some cells, however, mitotic exit occurred in the presence of pole-associated chromosomes. We determined that this premature mitotic exit is due to defects in spindle assembly checkpoint (SAC) signaling, such that cells are unable to maintain a prolonged mitotic arrest in the presence of unaligned chromosomes. This SAC defect is caused in part by a loss of kinetochore-associated Mad2 in E6-expressing cells. Our results demonstrate that E6-expressing cells exhibit previously unappreciated mitotic defects that likely contribute to HPV-mediated cancer progression.


Assuntos
Transformação Celular Viral , Cromátides/metabolismo , Papillomavirus Humano 16/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Proteínas Repressoras/metabolismo , Polos do Fuso/metabolismo , Aneuploidia , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Humanos , Cinetocoros/metabolismo , Mitose , Proteínas E7 de Papillomavirus/metabolismo , Transdução de Sinais , Fuso Acromático/metabolismo , Polos do Fuso/fisiologia
7.
Methods Mol Biol ; 1413: 147-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27193848

RESUMO

Duplicated sister chromatids connect to the mitotic spindle through kinetochores, large proteinaceous structures built at sites of centromeric heterochromatin. Kinetochores are responsible for harnessing the forces generated by microtubule polymerization and depolymerization to power chromosome movements. The fidelity of chromosome segregation relies on proper kinetochore function, as precise regulation of the attachment between kinetochores and microtubules is essential to prevent mitotic errors, which are linked to the initiation and progression of cancer and the formation of birth defects (Godek et al., Nat Rev Mol Cell Biol 16(1):57-64, 2014; Ricke and van Deursen, Semin Cell Dev Biol 22(6):559-565, 2011; Holland and Cleveland, EMBO Rep 13(6):501-514, 2012). Here we describe assays to quantitatively measure kinetochore-microtubule attachment stability in cultured cells.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Inativação Gênica , Humanos , Cinetocoros/química , Microscopia de Fluorescência , Microtúbulos/química , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Fuso Acromático/química , Fuso Acromático/metabolismo , Temperatura
8.
Dev Cell ; 36(5): 487-97, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26954544

RESUMO

Incorrect attachment of kinetochore microtubules is the leading cause of chromosome missegregation in cancers. The highly conserved chromosomal passenger complex (CPC), containing mitotic kinase Aurora B as a catalytic subunit, ensures faithful chromosome segregation through destabilizing incorrect microtubule attachments and promoting biorientation of chromosomes on the mitotic spindle. It is unknown whether CPC dysfunction affects chromosome segregation fidelity in cancers and, if so, how. Here, we show that heterochromatin protein 1 (HP1) is an essential CPC component required for full Aurora B activity. HP1 binding to the CPC becomes particularly important when Aurora B phosphorylates kinetochore targets to eliminate erroneous microtubule attachments. Remarkably, a reduced proportion of HP1 bound to CPC is widespread in cancers, which causes an impairment in Aurora B activity. These results indicate that HP1 is an essential modulator for CPC function and identify a molecular basis for chromosome segregation errors in cancer cells.


Assuntos
Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Aurora Quinase B/genética , Linhagem Celular Tumoral , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Humanos , Mitose/fisiologia , Fuso Acromático/metabolismo
9.
Clin Cancer Res ; 21(2): 233-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25104085

RESUMO

Kinetochores are large protein structures assembled on centromeric DNA during mitosis that bind to microtubules of the mitotic spindle to orchestrate and power chromosome movements. Deregulation of kinetochore-microtubule (KT-MT) attachments has been implicated in driving chromosome instability and cancer evolution; however, the nature and source of KT-MT attachment defects in cancer cells remain largely unknown. Here, we highlight recent findings suggesting that oncogene-driven changes in kinetochore regulation occur in glioblastoma multiforme (GBM) and possibly other cancers exhibiting chromosome instability, giving rise to novel therapeutic opportunities. In particular, we consider the GLE2p-binding sequence domains of BubR1 and the newly discovered BuGZ, two kinetochore-associated proteins, as candidate therapeutic targets for GBM.


Assuntos
Antineoplásicos/farmacologia , Cinetocoros/fisiologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Humanos , Cinetocoros/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular , Microtúbulos/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/patologia , Ligação Proteica
10.
Dev Cell ; 28(3): 282-94, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24462187

RESUMO

During mitosis, the spindle assembly checkpoint (SAC) monitors the attachment of kinetochores (KTs) to the plus ends of spindle microtubules (MTs) and prevents anaphase onset until chromosomes are aligned and KTs are under proper tension. Here, we identify a SAC component, BuGZ/ZNF207, from an RNAi viability screen in human glioblastoma multiforme (GBM) brain tumor stem cells. BuGZ binds to and stabilizes Bub3 during interphase and mitosis through a highly conserved GLE2p-binding sequence (GLEBS) domain. Inhibition of BuGZ results in loss of both Bub3 and its binding partner Bub1 from KTs, reduction of Bub1-dependent phosphorylation of centromeric histone H2A, attenuation of KT-based Aurora B kinase activity, and lethal chromosome congression defects in cancer cells. Phylogenetic analysis indicates that BuGZ orthologs are highly conserved among eukaryotes, but are conspicuously absent from budding and fission yeasts. These findings suggest that BuGZ has evolved to facilitate Bub3 activity and chromosome congression in higher eukaryotes.


Assuntos
Proteínas de Ciclo Celular/química , Cromossomos Humanos/genética , Glioblastoma/patologia , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/fisiologia , Dedos de Zinco/genética , Sequência de Aminoácidos , Animais , Aurora Quinase B/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Imunofluorescência , Glioblastoma/genética , Glioblastoma/metabolismo , Histonas/metabolismo , Humanos , Immunoblotting , Camundongos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mitose/fisiologia , Dados de Sequência Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação , Filogenia , Proteínas de Ligação a Poli-ADP-Ribose , Estabilidade Proteica , RNA Interferente Pequeno/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA