Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1286754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188285

RESUMO

Introduction: Targeted-immunotherapies such as antibody-drug conjugates (ADC), chimeric antigen receptor (CAR) T cells or bispecific T-cell engagers (eg, BiTE®) all aim to improve cancer treatment by directly targeting cancer cells while sparing healthy tissues. Success of these therapies requires tumor antigens that are abundantly expressed and, ideally, tumor specific. The CD34-related stem cell sialomucin, podocalyxin (PODXL), is a promising target as it is overexpressed on a variety of tumor types and its expression is consistently linked to poor prognosis. However, PODXL is also expressed in healthy tissues including kidney podocytes and endothelia. To circumvent this potential pitfall, we developed an antibody, named PODO447, that selectively targets a tumor-associated glycoform of PODXL. This tumor glycoepitope is expressed by 65% of high-grade serous ovarian carcinoma (HGSOC) tumors. Methods: In this study we characterize these PODO447-expressing tumors as a distinct subset of HGSOC using four different patient cohorts that include pre-chemotherapy, post-neoadjuvant chemotherapy (NACT) and relapsing tumors as well as tumors from various peritoneal locations. Results: We find that the PODO447 epitope expression is similar across tumor locations and negligibly impacted by chemotherapy. Invariably, tumors with high levels of the PODO447 epitope lack infiltrating CD8+ T cells and CD20+ B cells/plasma cells, an immune phenotype consistently associated with poor outcome. Discussion: We conclude that the PODO447 glycoepitope is an excellent biomarker of immune "cold" tumors and a candidate for the development of targeted-therapies for these hard-to-treat cancers.

2.
Breast Cancer Res ; 17: 46, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25887862

RESUMO

INTRODUCTION: Podocalyxin (gene name PODXL) is a CD34-related sialomucin implicated in the regulation of cell adhesion, migration and polarity. Upregulated expression of podocalyxin is linked to poor patient survival in epithelial cancers. However, it is not known if podocalyxin has a functional role in tumor progression. METHODS: We silenced podocalyxin expression in the aggressive basal-like human (MDA-MB-231) and mouse (4T1) breast cancer cell lines and also overexpressed podocalyxin in the more benign human breast cancer cell line, MCF7. We evaluated how podocalyxin affects tumorsphere formation in vitro and compared the ability of podocalyxin-deficient and podocalyxin-replete cell lines to form tumors and metastasize using xenogenic or syngeneic transplant models in mice. Finally, in an effort to develop therapeutic treatments for systemic cancers, we generated a series of antihuman podocalyxin antibodies and screened these for their ability to inhibit tumor progression in xenografted mice. RESULTS: Although deletion of podocalyxin does not alter gross cell morphology and growth under standard (adherent) culture conditions, expression of PODXL is required for efficient formation of tumorspheres in vitro. Correspondingly, silencing podocalyxin resulted in attenuated primary tumor growth and invasiveness in mice and severely impaired the formation of distant metastases. Likewise, in competitive tumor engraftment assays where we injected a 50:50 mixture of control and shPODXL (short-hairpin RNA targeting PODXL)-expressing cells, we found that podocalyxin-deficient cells exhibited a striking decrease in the ability to form clonal tumors in the lung, liver and bone marrow. Finally, to validate podocalyxin as a viable target for immunotherapy, we screened a series of novel antihuman podocalyxin antibodies for their ability to inhibit tumor progression in vivo. One of these antibodies, PODOC1, potently blocked tumor growth and metastasis. CONCLUSIONS: We show that podocalyxin plays a key role in the formation of primary tumors and distant tumor metastasis. In addition, we validate podocalyxin as potential target for monoclonal antibody therapy to inhibit primary tumor growth and systemic dissemination.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sialoglicoproteínas/antagonistas & inibidores , Sialoglicoproteínas/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Mamárias Animais , Camundongos , Metástase Neoplásica , Interferência de RNA , RNA Interferente Pequeno/genética , Sialoglicoproteínas/genética , Esferoides Celulares , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA