Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(1)2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275949

RESUMO

We analyzed the T-cell responses induced by lineal epitopes of glycoprotein 5 (GP5) from PRRSV to explore the role of this protein in the immunological protection mediated by T-cells. The GP5 peptides were conjugated with a carrier protein for primary immunization and booster doses. Twenty-one-day-old pigs were allocated into four groups (seven pigs per group): control (PBS), vehicle (carrier), PTC1, and PTC2. Cytokine levels were measured at 2 days post-immunization (DPI) from serum samples. Cytotoxic T-lymphocytes (CTLs, CD8+) from peripheral blood were quantified via flow cytometry at 42 DPI. The cytotoxicity was evaluated by co-culturing primed lymphocytes with PRRSV derived from an infectious clone. The PTC2 peptide increased the serum concentrations of pro-inflammatory cytokines (i.e., TNF-α, IL-1ß, IL-8) and cytokines that activate the adaptive cellular immunity associated with T-lymphocytes (i.e., IL-4, IL-6, IL-10, and IL-12). The concentration of CTLs (CD8+) was significantly higher in groups immunized with the peptides, which suggests a proliferative response in this cell population. Primed CTLs from immunized pigs showed cytolytic activity in PRRSV-infected cells in vitro. PTC1 and PTC2 peptides induced a protective T-cell-mediated response in pigs immunized against PRRSV, due to the presence of T epitopes in their sequences.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Anticorpos Antivirais , Citocinas/metabolismo , Fator de Necrose Tumoral alfa , Epitopos
2.
Antiviral Res ; 147: 149-158, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29037976

RESUMO

Dengue is the most important mosquito-transmitted viral disease and a major global health concern. Over the last decade, dengue virus (DENV) drug discovery and development has intensified, however, this has not resulted in approved DENV-specific antiviral treatments yet. DENV and hepatitis C virus (HCV) belong to the same Flaviviridae family and, in contrast to DENV, antiviral treatments for HCV have been licensed. Therefore, applying the knowledge gained on anti-HCV drugs may foster the discovery and development of dengue antiviral drugs. Here, we screened a library of compounds with established anti-HCV activity in a DENV-2 sub-genomic replicon inhibition assay and selected compounds with single-digit micromolar activity. These compounds were advanced into a hit-to-lead medicinal chemistry program resulting in lead compound JNJ-1A, which inhibited the DENV-2 sub-genomic replicon at 0.7 µM, in the absence of cytotoxicity. In addition, JNJ-1A showed equipotent antiviral activity against DENV serotypes 1, 2, and 4. In vitro resistance selection experiments with JNJ-1A induced mutation T108I in non-structural protein 4B (NS4B), pointing towards a mechanism of action linked to this protein. Collectively, we described the discovery and characterization of a novel DENV inhibitor potentially targeting NS4B.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Farmacorresistência Viral/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacocinética , Antivirais/toxicidade , Linhagem Celular Tumoral , Chlorocebus aethiops , Dengue , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Descoberta de Drogas , Farmacorresistência Viral/efeitos dos fármacos , Hepacivirus/genética , Humanos , Mutação , RNA Viral/genética , Replicon/efeitos dos fármacos , Análise de Sequência de RNA , Bibliotecas de Moléculas Pequenas , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA