Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37491117

RESUMO

Dialkylphosphates (DAPs), metabolites of organophosphate (OP) pesticides, are widely distributed in the environment and are often used as biomarkers of OP exposure. Recent reports indicate that DAPs may be genotoxic, both in vitro and in vivo. We have examined the genotoxicity of the methylated DAPs dimethyldithiophosphate (DMDTP) and dimethylphosphate (DMTP) and the ethylated DAPs diethyldithiophosphate (DEDTP) and diethylphosphate (DETP), in comparison with their parental compounds, malathion and terbufos, respectively, in bone marrow polychromatic erythrocytes (PCE) of male and female Balb/c mice. We also compared DNA damage (comet assay) induced by DMDTP and dimethyl phosphate (DMP) in human cell lines. Both DMDTP and DMP caused DNA damage in peripheral blood mononuclear cells, HeLa cells, and the hepatic cell lines HepG2 and WRL-68. In the in vivo micronucleus assay, methylated and ethylated DAPs increased micronucleated PCE cells in both male and female mice. Female mice were more susceptible to DNA damage. In comparison to their parental compounds, methylated DAPs, particularly DMTP, were more genotoxic than malathion; DEDTP, DETP, and terbufos were similar in potency. These results suggest that DAPs may contribute to DNA damage associated with OP pesticide exposure.


Assuntos
Inseticidas , Praguicidas , Masculino , Feminino , Humanos , Animais , Camundongos , Malation/toxicidade , Camundongos Endogâmicos BALB C , Leucócitos Mononucleares/química , Células HeLa , Compostos Organofosforados/toxicidade , Organofosfatos/toxicidade , Dano ao DNA , Células da Medula Óssea/metabolismo , Praguicidas/toxicidade , Exposição Ambiental
2.
Chem Biol Interact ; 382: 110593, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270087

RESUMO

The non-cholinergic molecular targets of organophosphate (OP) compounds have recently been investigated to explain their role in the generation of non-neurological diseases, such as immunotoxicity and cancer. Here, we evaluated the effects of malathion and its dialkylphosphate (DAP) metabolites on the cytoskeleton components and organization of RAW264.7 murine macrophages as non-cholinergic targets of OP and DAPs toxicity. All OP compounds affected actin and tubulin polymerization. Malathion, dimethyldithiophosphate (DMDTP) dimethylthiophosphate (DMTP), and dimethylphosphate (DMP) induced elongated morphologies and the formation of pseudopods rich in microtubule structures, and increased filopodia formation and general actin disorganization in RAW264.7 cells and slightly reduced stress fibers in the human fibroblasts GM03440, without significantly disrupting the tubulin or vimentin cytoskeleton. Exposure to DMTP and DMP increased cell migration in the wound healing assay but did not affect phagocytosis, indicating a very specific modification in the organization of the cytoskeleton. The induction of actin cytoskeleton rearrangement and cell migration suggested the activation of cytoskeletal regulators such as small GTPases. We found that DMP slightly reduced Ras homolog family member A activity but increased the activities of Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) from 5 min to 2 h of exposure. Chemical inhibition of Rac1 with NSC23766 reduced cell polarization and treatment with DMP enhanced cell migration, but Cdc42 inhibition by ML-141 completely inhibited the effects of DMP. These results suggest that methylated OP compounds, especially DMP, can modify macrophage cytoskeleton function and configuration via activation of Cdc42, which may represent a potential non-cholinergic molecular target for OP compounds.


Assuntos
Inseticidas , Malation , Camundongos , Humanos , Animais , Malation/toxicidade , Malation/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Tubulina (Proteína)/metabolismo , Citoesqueleto de Actina/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Movimento Celular , Compostos Organofosforados/metabolismo , Organofosfatos/metabolismo
3.
Chem Biol Interact ; 346: 109578, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265256

RESUMO

Current organophosphate (OP) toxicity research now considers potential non-cholinergic mechanisms for these compounds, since the inhibition of acetylcholinesterase (AChE) cannot completely explain all the adverse biological effects of OP. Thanks to the development of new strategies for OP detection, some potential molecular targets have been identified. Among these molecules are several cytoskeletal proteins, including actin, tubulin, intermediate filament proteins, and associated proteins, such as motor proteins, microtubule-associated proteins (MAPs), and cofilin. in vitro, ex vivo, and some in vivo reports have identified alterations in the cytoskeleton following OP exposure, including cell morphology defects, cells detachments, intracellular transport disruption, aberrant mitotic spindle formation, modification of cell motility, and reduced phagocytic capability, which implicate the cytoskeleton in OP toxicity. Here, we reviewed the evidence indicating the cytoskeletal targets of OP compounds, including their strategies, the potential effects of their alterations, and their possible participation in neurotoxicity, embryonic development, cell division, and immunotoxicity related to OP compounds exposure.


Assuntos
Citoesqueleto/metabolismo , Compostos Organofosforados/metabolismo , Actinas/metabolismo , Animais , Carcinogênese , Divisão Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/toxicidade , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA