Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(12): 4904-4912, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33249826

RESUMO

Targeted drug delivery and controlled drug release can be obtained using specifically designed polymers as carriers. Due to their biocompatibility and biodegradability and especially the lack of an immune response, materials made of spider silk proteins are promising candidates for use in such applications. Particles made of recombinant spider silk proteins have previously been shown to be suitable drug and gene carriers as they could readily be loaded with various drug substances or biologicals, and subsequent release was observed over a defined period of time. However, the respective substances were bound non-covalently via hydrophobic or charge-charge interactions, and hence, the release of loaded substances could not be spatio-temporally controlled. Here, we present a setup of chemically modified recombinant spider silk protein eADF4 and variants thereof, combining their well-established biocompatible properties with covalent drug binding and triggered release upon changes in the pH or redox state, respectively. The usefulness of the spider silk platform technology was shown with model substances and cytostatic drugs bound to spider silk particles or films via a pH-labile hydrazine linker as one option, and the drugs could be released from the spider silk carriers upon acidification of the environment as seen, e.g., in tumorous tissues or endo/lysosomes. Sulfhydryl-bearing spider silk variants allowed model substance release if exposed to intracellular GSH (glutathione) levels as a second coupling option. The combination of non-immunogenic, nontoxic spider silk materials as drug carriers with precisely triggerable release chemistry presents a platform technology for a wide range of applications.


Assuntos
Liberação Controlada de Fármacos , Seda , Aranhas , Animais , Materiais Biocompatíveis , Portadores de Fármacos , Concentração de Íons de Hidrogênio , Oxirredução , Proteínas Recombinantes
2.
Biomaterials ; 172: 105-115, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29723755

RESUMO

The generation of strong T-cell immunity is one of the main challenges for the development of successful vaccines against cancer and major infectious diseases. Here we have engineered spider silk particles as delivery system for a peptide-based vaccination that leads to effective priming of cytotoxic T-cells. The recombinant spider silk protein eADF4(C16) was fused to the antigenic peptide from ovalbumin, either without linker or with a cathepsin cleavable peptide linker. Particles prepared from the hybrid proteins were taken up by dendritic cells, which are essential for T-cell priming, and successfully activated cytotoxic T-cells, without signs of immunotoxicity or unspecific immunostimulatory activity. Upon subcutaneous injection in mice, the particles were taken up by dendritic cells and accumulated in the lymph nodes, where immune responses are generated. Particles from hybrid proteins containing a cathepsin-cleavable linker induced a strong antigen-specific proliferation of cytotoxic T-cells in vivo, even in the absence of a vaccine adjuvant. We thus demonstrate the efficacy of a new vaccine strategy using a protein-based all-in-one vaccination system, where spider silk particles serve as carriers with an incorporated peptide antigen. Our study further suggests that engineered spider silk-based vaccines are extremely stable, easy to manufacture, and readily customizable.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Seda/química , Aranhas/química , Vacinas de Subunidades Antigênicas/farmacologia , Adjuvantes Imunológicos/farmacologia , Sequência de Aminoácidos , Aminoácidos/química , Animais , Antígenos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/citologia , Liberação Controlada de Fármacos , Feminino , Humanos , Macrófagos/citologia , Camundongos Endogâmicos C57BL , Ovalbumina/química , Tamanho da Partícula , Proteínas Recombinantes/química , Propriedades de Superfície , Linfócitos T Citotóxicos , Distribuição Tecidual
3.
Biomacromolecules ; 19(3): 962-972, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29357230

RESUMO

Magnetosomes are natural magnetic nanoparticles with exceptional properties that are synthesized in magnetotactic bacteria by a highly regulated biomineralization process. Their usability in many applications could be further improved by encapsulation in biocompatible polymers. In this study, we explored the production of spider silk-inspired peptides on magnetosomes of the alphaproteobacterium Magnetospirillum gryphiswaldense. Genetic fusion of different silk sequence-like variants to abundant magnetosome membrane proteins enhanced magnetite biomineralization and caused the formation of a proteinaceous capsule, which increased the colloidal stability of isolated particles. Furthermore, we show that spider silk peptides fused to a magnetosome membrane protein can be used as seeds for silk fibril growth on the magnetosome surface. In summary, we demonstrate that the combination of two different biogenic materials generates a genetically encoded hybrid composite with engineerable new properties and enhanced potential for various applications.


Assuntos
Nanopartículas de Magnetita , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Biossíntese Peptídica , Peptídeos , Seda/biossíntese , Aranhas/genética , Animais , Magnetossomos/genética , Magnetossomos/ultraestrutura , Magnetospirillum/genética , Magnetospirillum/ultraestrutura , Seda/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA