Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1354735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384467

RESUMO

Folate receptors can perform folate transport, cell adhesion, and/or transcription factor functions. The beta isoform of the folate receptor (FRß) has attracted considerable attention as a biomarker for immunosuppressive macrophages and myeloid-derived suppressor cells, however, its role in immunosuppression remains uncharacterized. We demonstrate here that FRß cannot bind folate on healthy tissue macrophages, but does bind folate after macrophage incubation in anti-inflammatory cytokines or cancer cell-conditioned media. We further show that FRß becomes functionally active following macrophage infiltration into solid tumors, and we exploit this tumor-induced activation to target a toll-like receptor 7 agonist specifically to immunosuppressive myeloid cells in solid tumors without altering myeloid cells in healthy tissues. We then use single-cell RNA-seq to characterize the changes in gene expression induced by the targeted repolarization of tumor-associated macrophages and finally show that their repolarization not only changes their own phenotype, but also induces a proinflammatory shift in all other immune cells of the same tumor mass, leading to potent suppression of tumor growth. Because this selective reprogramming of tumor myeloid cells is accompanied by no systemic toxicity, we propose that it should constitute a safe method to reprogram the tumor microenvironment.


Assuntos
Receptor 2 de Folato , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/metabolismo , Macrófagos , Ácido Fólico/metabolismo
2.
Neurobiol Dis ; 190: 106370, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049013

RESUMO

After spinal cord injury (SCI), infiltrating macrophages undergo excessive phagocytosis of myelin and cellular debris, forming lipid-laden foamy macrophages. To understand their role in the cellular pathology of SCI, investigation of the foamy macrophage phenotype in vitro revealed a pro-inflammatory profile, increased reactive oxygen species (ROS) production, and mitochondrial dysfunction. Bioinformatic analysis identified PI3K as a regulator of inflammation in foamy macrophages, and inhibition of this pathway decreased their lipid content, inflammatory cytokines, and ROS production. Macrophage-specific inhibition of PI3K using liposomes significantly decreased foamy macrophages at the injury site after a mid-thoracic contusive SCI in mice. RNA sequencing and in vitro analysis of foamy macrophages revealed increased autophagy and decreased phagocytosis after PI3K inhibition as potential mechanisms for reduced lipid accumulation. Together, our data suggest that the formation of pro-inflammatory foamy macrophages after SCI is due to the activation of PI3K signaling, which increases phagocytosis and decreases autophagy.


Assuntos
Fosfatidilinositol 3-Quinases , Traumatismos da Medula Espinal , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Traumatismos da Medula Espinal/metabolismo , Lipídeos , Medula Espinal/patologia
3.
Neural Regen Res ; 17(7): 1505-1511, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34916435

RESUMO

Lipid peroxidation-derived aldehydes, such as acrolein, the most reactive aldehyde, have emerged as key culprits in sustaining post-spinal cord injury (SCI) secondary pathologies leading to functional loss. Strong evidence suggests that mitochondrial aldehyde dehydrogenase-2 (ALDH2), a key oxidoreductase and powerful endogenous anti-aldehyde machinery, is likely important for protecting neurons from aldehydes-mediated degeneration. Using a rat model of spinal cord contusion injury and recently discovered ALDH2 activator (Alda-1), we planned to validate the aldehyde-clearing and neuroprotective role of ALDH2. Over an acute 2 day period post injury, we found that ALDH2 expression was significantly lowered post-SCI, but not so in rats given Alda-1. This lower enzymatic expression may be linked to heightened acrolein-ALDH2 adduction, which was revealed in co-immunoprecipitation experiments. We have also found that administration of Alda-1 to SCI rats significantly lowered acrolein in the spinal cord, and reduced cyst pathology. In addition, Alda-1 treatment also resulted in significant improvement of motor function and attenuated post-SCI mechanical hypersensitivity up to 28 days post-SCI. Finally, ALDH2 was found to play a critical role in in vitro protection of PC12 cells from acrolein exposure. It is expected that the outcome of this study will broaden and enhance anti-aldehyde strategies in combating post-SCI neurodegeneration and potentially bring treatment to millions of SCI victims. All animal work was approved by Purdue Animal Care and Use Committee (approval No. 1111000095) on January 1, 2021.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA