Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0294933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38117832

RESUMO

INTRODUCTION: Angiogenic behaviour has been shown as highly versatile among Endothelial cells (ECs) causing problems of in vitro assays of angiogenesis considering their reproducibility. It is indispensable to investigate influencing factors of the angiogenic potency of ECs. OBJECTIVE: The present study aimed to analyse the impact of knocking down triosephosphate isomerase (TPI) on in vitro angiogenesis and simultaneously on vimentin (VIM) and adenosylmethionine synthetase isoform type 2 (MAT2A) expression. Furthermore, native expression profiles of TPI, VIM and MAT2A in the course of angiogenesis in vitro were examined. METHODS: Two batches of human dermal microvascular ECs were cultivated over 50 days and stimulated to undergo angiogenesis. A shRNA-mediated knockdown of TPI was performed. During cultivation, time-dependant morphological changes were detected and applied for EC-staging as prerequisite for quantifying in vitro angiogenesis. Additionally, mRNA and protein levels of all proteins were monitored. RESULTS: Opposed to native cells, knockdown cells were not able to enter late stages of angiogenesis and primarily displayed a downregulation of VIM and an uprise in MAT2A expression. Native cells increased their TPI expression and decreased their VIM expression during the course of angiogenesis in vitro. For MAT2A, highest expression was observed to be in the beginning and at the end of angiogenesis. CONCLUSION: Knocking down TPI provoked expressional changes in VIM and MAT2A and a deceleration of in vitro angiogenesis, indicating that TPI represents an angiogenic protein. Native expression profiles lead to the assumption of VIM being predominantly relevant in beginning stages, MAT2A in beginning and late stages and TPI during the whole course of angiogenesis in vitro.


Assuntos
Células Endoteliais , Triose-Fosfato Isomerase , Humanos , Triose-Fosfato Isomerase/genética , Células Endoteliais/metabolismo , Reprodutibilidade dos Testes , Angiogênese , Regulação para Baixo , Metionina Adenosiltransferase/metabolismo
2.
PLoS One ; 17(4): e0266774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482724

RESUMO

INTRODUCTION: In vitro assays of angiogenesis face immense problems considering their reproducibility based on the inhomogeneous characters of endothelial cells (ECs). It is necessary to detect influencing factors, which affect the angiogenic potency of ECs. OBJECTIVE: This study aimed to analyse expression profiles of vimentin (VIM), triosephosphate isomerase (TPI) and adenosylmethionine synthetase isoform type-2 (MAT2A) during the whole angiogenic cascade in vitro. Furthermore, the impact of knocking down vimentin (VIM) on angiogenesis in vitro was evaluated, while monitoring TPI and MAT2A expression. METHODS: A long-term cultivation and angiogenic stimulation of human dermal microvascular ECs was performed. Cells were characterized via VEGFR-1 and VEGFR-2 expression and a shRNA-mediated knockdown of VIM was performed. The process of angiogenesis in vitro was quantified via morphological staging and mRNA-and protein-levels of all proteins were analysed. RESULTS: While native cells ran through the angiogenic cascade chronologically, knockdown cells only entered beginning stages of angiogenesis and died eventually. Cell cultures showing a higher VEGFR-1 expression survived exclusively and displayed an upregulation of MAT2A and TPI expression. Native cells highly expressed VIM in early stages, MAT2A mainly in the beginning and TPI during the course of angiogenesis in vitro. CONCLUSION: VIM knockdown led to a deceleration of angiogenesis in vitro and knockdown cells displayed expressional changes in TPI and MAT2A. Cell populations with a higher number of stalk cells emerged as being more stable against manipulations and native expression profiles provided an indication of VIM and MAT2A being relevant predominantly in beginning stages and TPI during the whole angiogenic cascade in vitro.


Assuntos
Células Endoteliais , Triose-Fosfato Isomerase , Células Endoteliais/metabolismo , Humanos , Metionina Adenosiltransferase/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Reprodutibilidade dos Testes , Triose-Fosfato Isomerase/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vimentina/genética , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA