Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Syst Appl Microbiol ; 37(6): 402-11, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24794950

RESUMO

The taxonomic status of nine strains of the family Enterobacteriaceae isolated from floral nectar of wild Belgian, French, South African and Spanish insect-pollinated plants was investigated following a polyphasic approach. Confirmation that these strains belonged to the genus Rosenbergiella was obtained from comparative analysis of partial sequences of the 16S rRNA gene and other core housekeeping genes (atpD [ATP synthase ß-chain], gyrB [DNA gyrase subunit B] and rpoB [RNA polymerase ß-subunit]), DNA-DNA reassociation data, determination of the DNA G+C content and phenotypic profiling. Two strains belonged to the recently described species Rosenbergiella nectarea, while the other seven strains represented three novel species within the genus Rosenbergiella. The names Rosenbergiella australoborealis sp. nov. (with strain CdVSA 20.1(T) [LMG 27954(T)=CECT 8500(T)] as the type strain), Rosenbergiella collisarenosi sp. nov. (with strain 8.8A(T) [LMG 27955(T)=CECT 8501(T)] as the type strain) and Rosenbergiella epipactidis sp. nov. (with strain 2.1A(T) [LMG 27956(T)=CECT 8502(T)] as the type strain) are proposed. Additionally, the description of the genus Rosenbergiella is updated on the basis of new phenotypic and molecular data.


Assuntos
DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Genes Essenciais , RNA Ribossômico 16S/genética , Composição de Bases , DNA Bacteriano/química , Enterobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Fenótipo , Filogenia , Néctar de Plantas
2.
Mol Ecol Resour ; 13(4): 760-2, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23693143

RESUMO

This article documents the addition of 142 microsatellite marker loci to the Molecular Ecology Resources database. Loci were developed for the following species: Agriophyllum squarrosum, Amazilia cyanocephala, Batillaria attramentaria, Fungal strain CTeY1 (Ascomycota), Gadopsis marmoratus, Juniperus phoenicea subsp. turbinata, Liriomyza sativae, Lupinus polyphyllus, Metschnikowia reukaufii, Puccinia striiformis and Xylocopa grisescens. These loci were cross-tested on the following species: Amazilia beryllina, Amazilia candida, Amazilia rutila, Amazilia tzacatl, Amazilia violiceps, Amazilia yucatanensis, Campylopterus curvipennis, Cynanthus sordidus, Hylocharis leucotis, Juniperus brevifolia, Juniperus cedrus, Juniperus osteosperma, Juniperus oxycedrus, Juniperus thurifera, Liriomyza bryoniae, Liriomyza chinensis, Liriomyza huidobrensis and Liriomyza trifolii.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Repetições de Microssatélites , Animais , Abelhas/genética , Aves/genética , Peixes/genética , Fungos/genética , Plantas/genética
3.
Mol Phylogenet Evol ; 68(2): 161-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23583418

RESUMO

Metschnikowia (Saccharomycetales, Metschnikowiaceae/Metschnikowia clade) is an ascomycetous yeast genus whose species are associated mostly with angiosperms and their insect pollinators over all continents. The wide distribution of the genus, its association with angiosperm flowers, and the fact that it includes some of the best-studied yeasts in terms of biogeography and ecology make Metschnikowia an excellent group to investigate a possible co-radiation with angiosperm lineages. We performed phylogenetic analyses implementing Bayesian inference and likelihood methods, using a concatenated matrix (≈2.6 Kbp) of nuclear DNA (ACT1, 1st and 2nd codon positions of EF2, Mcm7, and RPB2) sequences. We included 77 species representing approximately 90% of the species in the family. Bayesian and parsimony methods were used to perform ancestral character reconstructions within Metschnikowia in three key morphological characters. Patterns of evolution of yeast habitats and divergence times were explored in the Metschnikowia clade lineages with the purpose of inferring the time of origin of angiosperm-associated habitats within Metschnikowiaceae. This paper presents the first phylogenetic hypothesis to include nearly all known species in the family. The polyphyletic nature of Clavispora was confirmed and Metschnikowia species (and their anamorphs) were shown to form two groups: one that includes mostly floricolous, insect-associated species distributed in mostly tropical areas (the large-spored Metschnikowia clade and relatives) and another that comprises more heterogeneous species in terms of habitat and geographical distribution. Reconstruction of character evolution suggests that sexual characters (ascospore length, number of ascospores, and ascus formation) evolved multiple times within Metschnikowia. Complex and dynamic habitat transitions seem to have punctuated the course of evolution of the Metschnikowiaceae with repeated and independent origins of angiosperm-associated habitats. The origin of the family is placed in the Late Cretaceous (71.7 Ma) with most extant species arising from the Early Eocene. Therefore, the Metschnikowiaceae likely radiated long after the Mid-Cretaceous radiations of angiosperms and their diversification seems to be driven by repeated radiation on a pre-existing diverse resource.


Assuntos
Genes Fúngicos/genética , Insetos/microbiologia , Magnoliopsida/microbiologia , Metschnikowia/genética , Filogenia , Animais , Teorema de Bayes , Evolução Molecular , Especiação Genética , Funções Verossimilhança , Metschnikowia/citologia , Polinização , Análise de Sequência de DNA
4.
Int J Syst Evol Microbiol ; 63(Pt 4): 1532-1539, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22904213

RESUMO

The taxonomic status of 14 strains of members of the genus Acinetobacter isolated from floral nectar of wild Mediterranean insect-pollinated plants, which did not belong to any previously described species within this genus, was investigated following a polyphasic approach. Confirmation that these strains formed two separate lineages within the genus Acinetobacter was obtained from comparative analysis of the partial sequences of the 16S rRNA gene and the gene encoding the ß-subunit of RNA polymerase (rpoB), DNA-DNA reassociation data, determination of the DNA G+C content and physiological tests. The names Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov. are proposed. The type strain of A. nectaris sp. nov. is SAP 763.2(T) ( = LMG 26958(T) = CECT 8127(T)) and that of A. boissieri sp. nov. is SAP 284.1(T) ( = LMG 26959(T) = CECT 8128(T)).


Assuntos
Acinetobacter/classificação , Filogenia , Néctar de Plantas/análise , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Flores/microbiologia , Insetos , Região do Mediterrâneo , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Polinização , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA