Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1838(1 Pt B): 127-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24021239

RESUMO

Saccharomyces cerevisiae cells are able to grow at very different potassium concentrations adapting its intracellular cation levels to changes in the external milieu. Potassium homeostasis in wild type cells resuspended in media with low potassium is an example of non-perfect adaptation since the same intracellular concentration is not approached irrespective of the extracellular levels of the cation. By using yeasts lacking the Trk1,2 system or expressing different versions of the mutated main plasma membrane potassium transporter (Trk1), we show that Trk1 is not essential for adaptation to potassium changes but the dynamics of potassium loss is very different in the wild type and in trk1,2 mutant or in yeasts expressing Trk1 versions with highly impaired transport characteristics. We also show that the pattern here described can be also fulfilled by heterologous expression of NcHAK1, a potassium transporter not belonging to the TRK family. Hyperpolarization and cationic drugs sensitivity in mutants with defective transport capacity provide additional support to the hypothesis of connections between the activity of the Trk system and the plasma membrane H(+) ATPase (Pma1) in the adaptive process.


Assuntos
Proteínas de Transporte de Cátions/genética , Regulação Fúngica da Expressão Gênica , Potássio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adaptação Fisiológica , Proteínas de Transporte de Cátions/deficiência , Cátions Monovalentes , Teste de Complementação Genética , Transporte de Íons , Mutação , Neurospora crassa/química , Neurospora crassa/genética , Neurospora crassa/metabolismo , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
2.
PLoS Comput Biol ; 8(6): e1002548, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737060

RESUMO

The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method ("the reverse tracking algorithm") we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis.


Assuntos
Modelos Biológicos , Potássio/metabolismo , Saccharomyces cerevisiae/metabolismo , Algoritmos , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Biologia Computacional , Simulação por Computador , Genes Fúngicos , Homeostase , Transporte de Íons , Mutação , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo
3.
Eukaryot Cell ; 10(9): 1241-50, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21724935

RESUMO

Potassium homeostasis is crucial for living cells. In the yeast Saccharomyces cerevisiae, the uptake of potassium is driven by the electrochemical gradient generated by the Pma1 H(+)-ATPase, and this process represents a major consumer of the gradient. We considered that any mutation resulting in an alteration of the electrochemical gradient could give rise to anomalous sensitivity to any cationic drug independently of its toxicity mechanism. Here, we describe a genomewide screen for mutants that present altered tolerance to hygromycin B, spermine, and tetramethylammonium. Two hundred twenty-six mutant strains displayed altered tolerance to all three drugs (202 hypersensitive and 24 hypertolerant), and more than 50% presented a strong or moderate growth defect at a limiting potassium concentration (1 mM). Functional groups such as protein kinases and phosphatases, intracellular trafficking, transcription, or cell cycle and DNA processing were enriched. Essentially, our screen has identified a substantial number of genes that were not previously described to play a direct or indirect role in potassium homeostasis. A subset of 27 representative mutants were selected and subjected to diverse biochemical tests that, in some cases, allowed us to postulate the basis for the observed phenotypes.


Assuntos
Proteínas de Transporte de Cátions/genética , Mutação/genética , Potássio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Higromicina B/farmacologia , Potenciais da Membrana , Fenótipo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Compostos de Amônio Quaternário/farmacologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espermina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA