Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 3805, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228275

RESUMO

Spread of parasite resistance to artemisinin threatens current frontline antimalarial therapies, highlighting the need for new drugs with alternative modes of action. Since only 0.2-1% of asexual parasites differentiate into sexual, transmission-competent forms, targeting this natural bottleneck provides a tangible route to interrupt disease transmission and mitigate resistance selection. Here we present a high-throughput screen of gametogenesis against a ~70,000 compound diversity library, identifying seventeen drug-like molecules that target transmission. Hit molecules possess varied activity profiles including male-specific, dual acting male-female and dual-asexual-sexual, with one promising N-((4-hydroxychroman-4-yl)methyl)-sulphonamide scaffold found to have sub-micromolar activity in vitro and in vivo efficacy. Development of leads with modes of action focussed on the sexual stages of malaria parasite development provide a previously unexplored base from which future therapeutics can be developed, capable of preventing parasite transmission through the population.


Assuntos
Antimaláricos/análise , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala/métodos , Malária/parasitologia , Malária/transmissão , Parasitos/fisiologia , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Comportamento Alimentar , Feminino , Gametogênese/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Camundongos , Parasitos/efeitos dos fármacos , Fenótipo , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
2.
Nat Commun ; 8: 15160, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513586

RESUMO

Plasmodium falciparum stage V gametocytes are responsible for parasite transmission, and drugs targeting this stage are needed to support malaria elimination. We here screen the Tres Cantos Antimalarial Set (TCAMS) using the previously developed P. falciparum female gametocyte activation assay (Pf FGAA), which assesses stage V female gametocyte viability and functionality using Pfs25 expression. We identify over 400 compounds with activities <2 µM, chemically classified into 57 clusters and 33 singletons. Up to 68% of the hits are chemotypes described for the first time as late-stage gametocyte-targeting molecules. In addition, the biological profile of 90 compounds representing the chemical diversity is assessed. We confirm in vitro transmission-blocking activity of four of the six selected molecules belonging to three distinct scaffold clusters. Overall, this TCAMS gametocyte screen provides 276 promising antimalarial molecules with dual asexual/sexual activity, representing starting points for target identification and candidate selection.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células Germinativas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Modelos Animais de Doenças , Feminino , Flagelos/metabolismo , Células Hep G2 , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Reprodutibilidade dos Testes
3.
Mem Inst Oswaldo Cruz ; 108(6): 801-3, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24037205

RESUMO

The production of fully functional human red cells in vitro from haematopoietic stem cells (hHSCs) has been successfully achieved. Recently, the use of hHSCs from cord blood represented a major improvement to develop the continuous culture system for Plasmodium vivax. Here, we demonstrated that CD34⁺ hHSCs from peripheral blood and bone marrow can be expanded and differentiated to reticulocytes using a novel stromal cell. Moreover, these reticulocytes and mature red blood cells express surface markers for entrance of malaria parasites contain adult haemoglobin and are also permissive to invasion by P. vivax and Plasmodium falciparum parasites.


Assuntos
Antígenos CD34/isolamento & purificação , Eritrócitos/parasitologia , Células-Tronco Hematopoéticas/parasitologia , Malária Vivax , Malária/sangue , Plasmodium falciparum , Diferenciação Celular , Técnicas de Cocultura/métodos , Humanos , Reticulócitos/citologia , Reticulócitos/parasitologia
4.
PLoS One ; 7(4): e35019, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514702

RESUMO

BACKGROUND: Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes. However, to date, the main limitation for measuring the effect of molecules against mature gametocytes on a large scale is the lack of a standardized and reliable method. Here we provide an efficient method to produce and purify mature gametocytes in vitro. Based on this new procedure, we developed a robust, affordable, and sensitive ATP bioluminescence-based assay. We then assessed the activity of 17 gold-standard anti-malarial drugs on Plasmodium late stage gametocytes. METHODS AND FINDINGS: Difficulties in producing large amounts of gametocytes have limited progress in the development of malaria transmission blocking assays. We improved the method established by Ifediba and Vanderberg to obtain viable, mature gametocytes en masse, whatever the strain used. We designed an assay to determine the activity of antimalarial drugs based on the intracellular ATP content of purified stage IV-V gametocytes after 48 h of drug exposure in 96/384-well microplates. Measurements of drug activity on asexual stages and cytotoxicity on HepG2 cells were also obtained to estimate the specificity of the active drugs. CONCLUSIONS: The work described here represents another significant step towards determination of the activity of new molecules on mature gametocytes of any strain with an automated assay suitable for medium/high-throughput screening. Considering that the biology of the forms involved in the sexual and asexual stages is very different, a screen of our 2 million-compound library may allow us to discover novel anti-malarial drugs to target gametocyte-specific metabolic pathways.


Assuntos
Trifosfato de Adenosina/química , Antimaláricos/farmacologia , Células Germinativas/efeitos dos fármacos , Medições Luminescentes/métodos , Testes de Sensibilidade Parasitária/métodos , Plasmodium falciparum/citologia , Plasmodium falciparum/efeitos dos fármacos , Animais
5.
J Med Chem ; 55(7): 3216-27, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22380766

RESUMO

Malaria remains one of the most widespread human infectious diseases, and its eradication will largely depend on antimalarial drug discovery. Here, we present a novel approach to the development of the azalide class of antimalarials by describing the design, synthesis, and characterization of novel 2'-O-substituted-9-deoxo-9a-methyl-9a-aza-9a-homoerythromycin A derivatives consisting of different quinoline moieties covalently liked to a 15-membered azalide scaffold at position 2'. By multistep straightforward synthesis, 19 new, stable, and soluble compounds were created and biologically profiled. Most active compounds from the 4-amino-7-chloroquinoline series showed high selectivity for P. falciparum parasites, and in vitro antimalarial activity improved 1000-fold over azithromycin. Antimalarial potency was equivalent to chloroquine against the sensitive strain (3D7A) and up to 48-fold enhanced over chloroquine against the chloroquine-resistant strain (W2). Concurrently, the antibacterial activity of the compounds was eliminated, thus facilitating the development of malaria-specific macrolide agents.


Assuntos
Antimaláricos/síntese química , Compostos Aza/síntese química , Eritromicina/análogos & derivados , Eritromicina/síntese química , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/síntese química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antimaláricos/farmacologia , Compostos Aza/farmacologia , Linhagem Celular Tumoral , Cloroquina/farmacologia , Resistência a Medicamentos , Eritromicina/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Quinolinas/farmacologia , Relação Estrutura-Atividade
6.
Toxicol In Vitro ; 23(8): 1528-34, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19540329

RESUMO

Drug-induced phospholipidosis (PLD) is characterized by the excessive accumulation of phospholipids in lysosomes. It is accompanied by intracellular retention of drug that could be associated with increased cytotoxicity. Drug-induced PLD is recognized as a significant challenge for drug development, depending on the severity of the effect it could be reversible or caused cell death. Therefore, the identification at early stages of drug discovery of the potential to induce PLD can be advantageous for selecting improved development candidates. PLD has commonly been associated with cationic amphiphilic drugs (CADs) composed by a hydrophobic ring structure and a hydrophilic side chain with a charged amine group. 4(1H)-pyridone derivatives are a family of antimalarial agents that act as potent selective inhibitors of Plasmodium falciparum mitochondrial function and according to their chemical structure might be considered to be CADs. In the present study, the potential of 4(1H)-pyridone derivatives to induce PLD in vitro and their general cytotoxicity properties were investigated. A cell-based fluorescence assay using the fluorescent phospholipid probe NBD-PE [N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt] was established. Five PLD-inducing reference compounds and six negative reference compounds were evaluated in vitro in HepG2 cell line. The pyridones tested were ranked by using a chloroquine-equivalent scale (chloroquine constituting a well-known antimalarial drug that acts as a potent inducer of lysosomal storage of phospholipids in both cell cultures and in vivo studies). The present findings indicate that these novel chemical antimalarial compounds are not PLD inducers despite to be considered structurally as CADs. Furthermore, none of the compounds tested showed significant cytotoxicity at their maximum solubility.


Assuntos
Antimaláricos/farmacologia , Lisossomos/metabolismo , Fosfolipídeos/metabolismo , Piridonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Fosfatidiletanolaminas/metabolismo , Piridonas/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA