Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nature ; 619(7970): 606-615, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438521

RESUMO

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neurônios Dopaminérgicos , Sobrevivência de Enxerto , Doenças Neuroinflamatórias , Doença de Parkinson , Linfócitos T Reguladores , Tirosina 3-Mono-Oxigenase , Humanos , Dopamina/análogos & derivados , Dopamina/metabolismo , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Mesencéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/terapia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Tirosina 3-Mono-Oxigenase/deficiência , Tirosina 3-Mono-Oxigenase/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Animais , Camundongos , Ratos , Oxidopamina/metabolismo , Sobrevivência de Enxerto/imunologia , Morte Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Neostriado/metabolismo , Fatores de Tempo , Proliferação de Células , Resultado do Tratamento
2.
Oper Neurosurg (Hagerstown) ; 24(5): 524-532, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701668

RESUMO

BACKGROUND: Using electrocorticography for research (R-ECoG) during deep brain stimulation (DBS) surgery has advanced our understanding of human cortical-basal ganglia neurophysiology and mechanisms of therapeutic circuit modulation. The safety of R-ECoG has been established, but potential effects of temporary ECoG strip placement on targeting accuracy have not been reported. OBJECTIVE: To determine whether temporary subdural electrode strip placement during DBS implantation surgery affects lead implantation accuracy. METHODS: Twenty-four consecutive patients enrolled in a prospective database who underwent awake DBS surgery were identified. Ten of 24 subjects participated in R-ECoG. Lead locations were determined after fusing postoperative computed tomography scans into the surgical planning software. The effect of brain shift was quantified using Lead-DBS and analyzed in a mixed-effects model controlling for time interval to postoperative computed tomography. Targeting accuracy was reported as radial and Euclidean distance errors and compared with Mann-Whitney tests. RESULTS: Neither radial error nor Euclidean distance error differed significantly between R-ECoG participants and nonparticipants. Pneumocephalus volume did not differ between the 2 groups, but brain shift was slightly greater with R-ECoG. Pneumocephalus volume correlated with brain shift, but neither of these measures significantly correlated with Euclidean distance error. There were no complications in either group. CONCLUSION: In addition to an excellent general safety profile as has been reported previously, these results suggest that performing R-ECoG during DBS implantation surgery does not affect the accuracy of lead placement.


Assuntos
Estimulação Encefálica Profunda , Pneumocefalia , Humanos , Eletrocorticografia , Estimulação Encefálica Profunda/métodos , Encéfalo/cirurgia , Tomografia Computadorizada por Raios X/métodos
3.
N Engl J Med ; 382(20): 1926-1932, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32402162

RESUMO

We report the implantation of patient-derived midbrain dopaminergic progenitor cells, differentiated in vitro from autologous induced pluripotent stem cells (iPSCs), in a patient with idiopathic Parkinson's disease. The patient-specific progenitor cells were produced under Good Manufacturing Practice conditions and characterized as having the phenotypic properties of substantia nigra pars compacta neurons; testing in a humanized mouse model (involving peripheral-blood mononuclear cells) indicated an absence of immunogenicity to these cells. The cells were implanted into the putamen (left hemisphere followed by right hemisphere, 6 months apart) of a patient with Parkinson's disease, without the need for immunosuppression. Positron-emission tomography with the use of fluorine-18-L-dihydroxyphenylalanine suggested graft survival. Clinical measures of symptoms of Parkinson's disease after surgery stabilized or improved at 18 to 24 months after implantation. (Funded by the National Institutes of Health and others.).


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Doença de Parkinson/terapia , Parte Compacta da Substância Negra/citologia , Idoso , Animais , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Seguimentos , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Masculino , Camundongos , Camundongos SCID , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Putamen/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Transplante Autólogo , Transplante Homólogo
4.
Phys Med Biol ; 63(9): 095015, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29637905

RESUMO

We propose a framework for electromagnetic (EM) simulation of deep brain stimulation (DBS) patients in radiofrequency (RF) coils. We generated a model of a DBS patient using post-operative head and neck computed tomography (CT) images stitched together into a 'virtual CT' image covering the entire length of the implant. The body was modeled as homogeneous. The implant path extracted from the CT data contained self-intersections, which we corrected automatically using an optimization procedure. Using the CT-derived DBS path, we built a model of the implant including electrodes, helicoidal internal conductor wires, loops, extension cables, and the implanted pulse generator. We also built four simplified models with straight wires, no extension cables and no loops to assess the impact of these simplifications on safety predictions. We simulated EM fields induced by the RF birdcage body coil in the body model, including at the DBS lead tip at both 1.5 Tesla (64 MHz) and 3 Tesla (123 MHz). We also assessed the robustness of our simulation results by systematically varying the EM properties of the body model and the position and length of the DBS implant (sensitivity analysis). The topology correction algorithm corrected all self-intersection and curvature violations of the initial path while introducing minimal deformations (open-source code available at http://ptx.martinos.org/index.php/Main_Page). The unaveraged lead-tip peak SAR predicted by the five DBS models (0.1 mm resolution grid) ranged from 12.8 kW kg-1 (full model, helicoidal conductors) to 43.6 kW kg-1 (no loops, straight conductors) at 1.5 T (3.4-fold variation) and 18.6 kW kg-1 (full model, straight conductors) to 73.8 kW kg-1 (no loops, straight conductors) at 3 T (4.0-fold variation). At 1.5 T and 3 T, the variability of lead-tip peak SAR with respect to the conductivity ranged between 18% and 30%. Variability with respect to the position and length of the DBS implant ranged between 9.5% and 27.6%.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Campos Eletromagnéticos , Neoplasias de Cabeça e Pescoço/terapia , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Próteses e Implantes , Exposição à Radiação/prevenção & controle , Idoso , Algoritmos , Estimulação Encefálica Profunda/métodos , Humanos , Masculino , Exposição à Radiação/análise , Ondas de Rádio , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA