Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 141: 338-347, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31279969

RESUMO

Dimethyl fumarate (DMF) is widely used to treat the human autoimmune diseases multiple sclerosis (MS) and psoriasis. DMF causes short-term oxidative stress and activates the antioxidant response via the transcription factor Nrf2 but its immunosuppressive effect is not well understood. Immune cell activation depends on calcium signaling which itself is influenced by the cellular redox state. We therefore measured calcium, reactive oxygen species levels and glutathione content in lymphocytes from immunized mice before onset of experimental autoimmune encephalomyelitis, in peripheral blood mononuclear cells from MS patients treated with DMF, and in mouse splenocytes treated ex vivo with DMF. This demonstrated altered redox states and increased lymphocytic calcium levels in all model systems. DMF caused an immediate influx of calcium from the extracellular space, long-term increased cytosolic calcium levels and reduced calcium stored in intracellular stores. The DMF-elicited current had the electrophysiological characteristics of a transient receptor potential channel and the intracellular calcium levels were normalized by antagonists of TRPA1. Interestingly, the sarco/endoplasmic reticulum Ca2+-ATPase SERCA2b was downregulated but more active due to glutathionylation of the redox-sensitive cysteine 674. DMF therefore causes pleiotropic changes in cellular calcium homeostasis which are likely caused by redox-sensitive post-translational modifications. These changes probably contribute to its immunosuppressive effects.


Assuntos
Fumarato de Dimetilo/farmacologia , Esclerose Múltipla/tratamento farmacológico , Psoríase/tratamento farmacológico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Canal de Cátion TRPA1/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Camundongos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Oxirredução/efeitos dos fármacos , Psoríase/genética , Psoríase/patologia , Espécies Reativas de Oxigênio/metabolismo
2.
Oxid Med Cell Longev ; 2017: 6093903, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28116039

RESUMO

Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF) is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) leading to increased synthesis of the major cellular antioxidant glutathione (GSH) and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR), a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase.


Assuntos
Fumarato de Dimetilo/farmacologia , Glutationa Redutase/biossíntese , Glutationa/metabolismo , Imunossupressores/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Linhagem Celular , Immunoblotting , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Regulação para Cima
3.
Biochem J ; 462(1): 125-32, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24869658

RESUMO

GPR39 is a G-protein-coupled zinc receptor that protects against diverse effectors of cell death. Its protective activity is mediated via constitutive activation of Gα13 and the RhoA pathway, leading to increased SRE (serum-response element)-dependent transcription; the zinc-dependent immediate activation of GPR39 involves Gq-mediated increases in cytosolic Ca2+ and Gs coupling leading to increased cAMP levels. We used the cytosolic and soluble C-terminus of GPR39 in a Y2H (yeast-2-hybrid) screen for interacting proteins, thus identifying PKIB (protein kinase A inhibitor ß). Co-expression of GPR39 with PKIB increased the protective activity of GPR39 via the constitutive, but not the ligand-mediated, pathway. PKIB inhibits protein kinase A by direct interaction with its pseudosubstrate domain; mutation of this domain abolished the inhibitory activity of PKIB on protein kinase A activity, but had no effect on the interaction with GPR39, cell protection and induction of SRE-dependent transcription. Zinc caused dissociation of PKIB from GPR39, thereby liberating it to associate with protein kinase A and inhibit its activity, which would result in a negative-feedback loop with the ability to limit activation of the Gs pathway by zinc.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células CHO , Linhagem Celular , Membrana Celular/metabolismo , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Camundongos , Técnicas do Sistema de Duplo-Híbrido , Zinco/metabolismo , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA