Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509321

RESUMO

For patients with acute myeloid leukemia, myelodysplastic syndrome, or acute lymphoblastic leukemia, allogeneic hematopoietic cell transplantation (HCT) is a potentially curative treatment. In addition to standard conditioning regimens for HCT, high-dose radioimmunotherapy (RIT) offers the unique opportunity to selectively deliver a high dose of radiation to the bone marrow while limiting side effects. Modification of a CD66b-specific monoclonal antibody (mAb) with a DTPA-based chelating agent should improve the absorbed dose distribution during therapy. The stability and radioimmunoreactive fraction of the radiolabeled mAbs were determined. Before RIT, all patients underwent dosimetry to determine absorbed doses to bone marrow, kidneys, liver, and spleen. Scans were performed twenty-four hours after therapy for quality control. A radiochemical purity of >95% and acceptable radioimmunoreactivity was achieved. Absorbed organ doses for the liver and kidney were consequently improved compared to reported historical data. All patients tolerated RIT well with no treatment-related acute adverse events. Complete remission could be observed in 4/5 of the patients 3 months after RIT. Two patients developed delayed liver failure unrelated to the radioimmunotherapy. The improved conjugation and radiolabeling procedure resulted in excellent stability, radiochemical purity, and CD66-specific radioimmunoreactivity of 90Y-labeled anti-CD66 mAb. RIT followed by conditioning and HCT was well tolerated. Based on these promising initial data, further prospective studies of [90Y]Y-DTPA-Bn-CHX-A″-anti-CD66-mAb-assisted conditioning in HCT are warranted.

2.
Clin Nucl Med ; 48(1): 54-55, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257061

RESUMO

ABSTRACT: In an end-stage midgut neuroendocrine tumor patient with carcinoid heart disease, right ventricular dysfunction, mildly reduced renal function, and refractory to 6 cycles of 177 Lu-HA-DOTATATE therapy, planar, and 22 hours SPECT/CT images were acquired after injection of 224 MBq of 203 Pb-VMT-α-NET to assess the feasibility of performing 212 Pb-VMT-α-NET therapy. A comparison of the 1.5 and 22 hours SPECT/CT images with 68 Ga-HA-DOTATATE PET/CT showed high uptake of 203 Pb-VMT-α-NET in liver metastases matching with the results of the PET/CT investigation.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Humanos , Tumores Neuroendócrinos/patologia , Chumbo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Octreotida/uso terapêutico , Compostos Radiofarmacêuticos
3.
Cancers (Basel) ; 14(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36010864

RESUMO

Inhibition studies in small animals are the standard for evaluating the specificity of newly developed drugs, including radiopharmaceuticals. Recently, it has been reported that the tumor accumulation of radiotracers can be assessed in the chorioallantoic membrane (CAM) model with similar results to experiments in mice, such contributing to the 3Rs principles (reduction, replacement, and refinement). However, inhibition studies to prove receptor-specific binding have not yet been performed in the CAM model. Thus, in the present work, we analyzed the feasibility of inhibition studies in ovo by PET and MRI using the PSMA-specific ligand [18F]siPSMA-14 and the corresponding inhibitor 2-PMPA. A dose-dependent blockade of [18F]siPSMA-14 uptake was successfully demonstrated by pre-dosing with different inhibitor concentrations. Based on these data, we conclude that the CAM model is suitable for performing inhibition studies to detect receptor-specific binding. While in the later stages of development of novel radiopharmaceuticals, testing in rodents will still be necessary for biodistribution analysis, the CAM model is a promising alternative to mouse experiments in the early phases of compound evaluation. Thus, using the CAM model and PET and MR imaging for early pre-selection of promising radiolabeled compounds could significantly reduce the number of animal experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA