Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 41(4): 651-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519817

RESUMO

BACKGROUND AND PURPOSE: There is concern that subvisible aggregates in biotherapeutic drug products pose a risk to patient safety. We investigated the threshold of biotherapeutic aggregates needed to induce immunogenic responses. METHODS AND RESULTS: Highly aggregated samples were tested in cell-based assays and induced cellular responses in a manner that depended on the number of particles. The threshold of immune activation varied by disease state (cancer, rheumatoid arthritis, allergy), concomitant therapies, and particle number. Compared to healthy donors, disease state patients showed an equal or lower response at the late phase (7 days), suggesting they may not have a higher risk of responding to aggregates. Xeno-het mice were used to assess the threshold of immune activation in vivo. Although highly aggregated samples (~ 1,600,000 particles/mL) induced a weak and transient immunogenic response in mice, a 100-fold dilution of this sample (~ 16,000 particles/mL) did not induce immunogenicity. To confirm this result, subvisible particles (up to ~ 18,000 particles/mL, containing aggregates and silicone oil droplets) produced under representative administration practices (created upon infusion of a drug product through an IV catheter) did not induce a response in cell-based assays or appear to increase the rate of adverse events or immunogenicity during phase 3 clinical trials. CONCLUSION: The ability of biotherapeutic aggregates to elicit an immune response in vitro, in vivo, and in the clinic depends on high numbers of particles. This suggests that there is a high threshold for aggregates to induce an immunogenic response which is well beyond that seen in standard biotherapeutic drug products.


Assuntos
Formação de Anticorpos , Humanos , Camundongos , Animais , Preparações Farmacêuticas
2.
Methods Mol Biol ; 2407: 429-445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985679

RESUMO

First identified as a viral defense mechanism, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) has been transformed into a gene-editing tool. It now affords promise in the treatment and potential eradication of a range of divergent genetic, cancer, infectious, and degenerative diseases. Adapting CRISPR-Cas into a programmable endonuclease directed guide RNA (gRNA) has attracted international attention. It was recently awarded the 2020 Nobel Prize in Chemistry. The limitations of this technology have also been identified and work has been made in providing potential remedies. For treatment of the human immunodeficiency virus type one (HIV-1), in particular, a CRISPR-Cas9 approach was adapted to target then eliminate latent proviral DNA. To this end, we reviewed the promise and perils of CRISPR-Cas gene-editing strategies for HIV-1 elimination. Obstacles include precise delivery to reservoir tissue and cell sites of latent HIV-1 as well as assay sensitivity and specificity. The detection and consequent excision of common viral strain sequences and the avoidance of off-target activity will serve to facilitate a final goal of HIV-1 DNA elimination and accelerate testing in infected animals ultimately for use in man.


Assuntos
Infecções por HIV , HIV-1 , Sistemas CRISPR-Cas/genética , Edição de Genes , HIV-1/genética , RNA Guia de Cinetoplastídeos/genética , Latência Viral
3.
EBioMedicine ; 73: 103678, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34774454

RESUMO

BACKGROUND: A barrier to HIV-1 cure rests in the persistence of proviral DNA in infected CD4+ leukocytes. The high HIV-1 mutation rate leads to viral diversity, immune evasion, and consequent antiretroviral drug resistance. While CRISPR-spCas9 can eliminate latent proviral DNA, its efficacy is limited by HIV strain diversity and precision target cell delivery. METHODS: A library of guide RNAs (gRNAs) designed to disrupt five HIV-1 exons (tat1-2/rev1-2/gp41) was constructed. The gRNAs were derived from a conseensus sequence of the transcriptional regulator tat from 4004 HIV-1 strains. Efficacy was affirmed by gRNA cell entry through transfection, electroporation, or by lentivirus or lipid nanoparticle (LNP) delivery. Treated cells were evaluated for viral excision by monitoring HIV-1 DNA, RNA, protein, and progeny virus levels. FINDINGS: Virus was reduced in all transmitted founder strains by 82 and 94% after CRISPR TatDE transfection or lentivirus treatments, respectively. No recorded off-target cleavages were detected. Electroporation of TatDE ribonucleoprotein and delivery of LNP TatDE gRNA and spCas9 mRNA to latently infected cells resulted in up to 100% viral excision. Protection against HIV-1-challenge or induction of virus during latent infection, in primary or transformed CD4+ T cells or monocytes was achieved. We propose that multi-exon gRNA TatDE disruption delivered by LNPs enables translation for animal and human testing. INTERPRETATION: These results provide "proof of concept' for CRISPR gRNA treatments for HIV-1 elimination. The absence of full-length viral DNA by LNP delivery paired with undetectable off-target affirms the importance of payload delivery for effective viral gene editing. FUNDING: The work was supported by the University of Nebraska Foundation, including donations from the Carol Swarts, M.D. Emerging Neuroscience Research Laboratory, the Margaret R. Larson Professorship, and individual donor support from the Frances and Louie Blumkin Foundation and from Harriet Singer. The research received support from National Institutes of Health grants T32 NS105594, 5R01MH121402, 1R01Al158160, R01 DA054535, PO1 DA028555, R01 NS126089, R01 NS36126, PO1 MH64570, P30 MH062261, and 2R01 NS034239.


Assuntos
Sistemas CRISPR-Cas , Éxons , Edição de Genes , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/genética , Linhagem Celular , Sequência Conservada , Imunofluorescência , Marcação de Genes , Genes Reporter , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Genoma Viral , Humanos , Lipossomos , Macrófagos/metabolismo , Macrófagos/virologia , Nanopartículas , Provírus/genética , Interferência de RNA , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , RNA Guia de Sistemas CRISPR-Cas
4.
J Neuroinflammation ; 18(1): 272, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798897

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by pathological deposition of misfolded self-protein amyloid beta (Aß) which in kind facilitates tau aggregation and neurodegeneration. Neuroinflammation is accepted as a key disease driver caused by innate microglia activation. Recently, adaptive immune alterations have been uncovered that begin early and persist throughout the disease. How these occur and whether they can be harnessed to halt disease progress is unclear. We propose that self-antigens would induct autoreactive effector T cells (Teffs) that drive pro-inflammatory and neurodestructive immunity leading to cognitive impairments. Here, we investigated the role of effector immunity and how it could affect cellular-level disease pathobiology in an AD animal model. METHODS: In this report, we developed and characterized cloned lines of amyloid beta (Aß) reactive type 1 T helper (Th1) and type 17 Th (Th17) cells to study their role in AD pathogenesis. The cellular phenotype and antigen-specificity of Aß-specific Th1 and Th17 clones were confirmed using flow cytometry, immunoblot staining and Aß T cell epitope loaded haplotype-matched major histocompatibility complex II IAb (MHCII-IAb-KLVFFAEDVGSNKGA) tetramer binding. Aß-Th1 and Aß-Th17 clones were adoptively transferred into APP/PS1 double-transgenic mice expressing chimeric mouse/human amyloid precursor protein and mutant human presenilin 1, and the mice were assessed for memory impairments. Finally, blood, spleen, lymph nodes and brain were harvested for immunological, biochemical, and histological analyses. RESULTS: The propagated Aß-Th1 and Aß-Th17 clones were confirmed stable and long-lived. Treatment of APP/PS1 mice with Aß reactive Teffs accelerated memory impairment and systemic inflammation, increased amyloid burden, elevated microglia activation, and exacerbated neuroinflammation. Both Th1 and Th17 Aß-reactive Teffs progressed AD pathology by downregulating anti-inflammatory and immunosuppressive regulatory T cells (Tregs) as recorded in the periphery and within the central nervous system. CONCLUSIONS: These results underscore an important pathological role for CD4+ Teffs in AD progression. We posit that aberrant disease-associated effector T cell immune responses can be controlled. One solution is by Aß reactive Tregs.


Assuntos
Doença de Alzheimer/patologia , Linfócitos T CD4-Positivos/patologia , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidose/patologia , Animais , Transtornos Cognitivos/patologia , Transtornos Cognitivos/psicologia , Inflamação/genética , Camundongos , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th1/patologia , Células Th17/imunologia , Células Th17/patologia
5.
Theranostics ; 10(2): 630-656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903142

RESUMO

Human immunodeficiency virus theranostics facilitates the development of long acting (LA) antiretroviral drugs (ARVs) by defining drug-particle cell depots. Optimal drug formulations are made possible based on precise particle composition, structure, shape and size. Through the creation of rod-shaped particles of defined sizes reflective of native LA drugs, theranostic probes can be deployed to measure particle-cell and tissue biodistribution, antiretroviral activities and drug retention. Methods: Herein, we created multimodal rilpivirine (RPV) 177lutetium labeled bismuth sulfide nanorods (177LuBSNRs) then evaluated their structure, morphology, configuration, chemical composition, biological responses and adverse reactions. Particle biodistribution was analyzed by single photon emission computed tomography (SPECT/CT) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging. Results: Nanoformulated RPV and BSNRs-RPV particles showed comparable physicochemical and cell biological properties. Drug-particle pharmacokinetics (PK) and biodistribution in lymphoid tissue macrophages proved equivalent, one with the other. Rapid particle uptake and tissue distribution were observed, without adverse reactions, in primary blood-derived and tissue macrophages. The latter was seen within the marginal zones of spleen. Conclusions: These data, taken together, support the use of 177LuBSNRs as theranostic probes as a rapid assessment tool for PK LA ARV measurements.


Assuntos
Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Lutécio/farmacocinética , Macrófagos/metabolismo , Nanopartículas/administração & dosagem , Radioisótopos/farmacocinética , Rilpivirina/farmacocinética , Nanomedicina Teranóstica/métodos , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/isolamento & purificação , HIV-1/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Compostos Radiofarmacêuticos/farmacocinética , Inibidores da Transcriptase Reversa/farmacocinética , Rilpivirina/farmacologia , Distribuição Tecidual
6.
J Control Release ; 311-312: 201-211, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31491432

RESUMO

Antiretroviral therapy requires lifelong daily dosing to attain viral suppression, restore immune function, and improve quality of life. As a treatment alternative, long-acting (LA) antiretrovirals can sustain therapeutic drug concentrations in blood for prolonged time periods. The success of recent clinical trials for LA parenteral cabotegravir and rilpivirine highlight the emergence of these new therapeutic options. Further optimization can improve dosing frequency, lower injection volumes, and facilitate drug-tissue distributions. To this end, we report the synthesis of a library of RPV prodrugs designed to sustain drug plasma concentrations and improved tissue biodistribution. The lead prodrug M3RPV was nanoformulated into the stable LA injectable NM3RPV. NM3RPV treatment led to RPV plasma concentrations above the protein-adjusted 90% inhibitory concentration for 25 weeks with substantial tissue depots after a single intramuscular injection in BALB/cJ mice. NM3RPV elicited 13- and 26-fold increases in the RPV apparent half-life and mean residence time compared to native drug formulation. Taken together, proof-of-concept is provided that nanoformulated RPV prodrugs can extend the apparent drug half-life and improve tissue biodistribution. These results warrant further development for human use.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Nanopartículas/administração & dosagem , Pró-Fármacos/administração & dosagem , Rilpivirina/administração & dosagem , Animais , Fármacos Anti-HIV/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , HIV-1/efeitos dos fármacos , Humanos , Macaca mulatta , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Pró-Fármacos/farmacocinética , Rilpivirina/farmacocinética , Distribuição Tecidual
7.
Biomaterials ; 222: 119441, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472458

RESUMO

While antiretroviral therapy (ART) has revolutionized treatment and prevention of human immunodeficiency virus type one (HIV-1) infection, regimen adherence, viral mutations, drug toxicities and access stigma and fatigue are treatment limitations. These have led to new opportunities for the development of long acting (LA) ART including implantable devices and chemical drug modifications. Herein, medicinal and formulation chemistry were used to develop LA prodrug nanoformulations of emtricitabine (FTC). A potent lipophilic FTC phosphoramidate prodrug (M2FTC) was synthesized then encapsulated into a poloxamer surfactant (NM2FTC). These modifications extended the biology, apparent drug half-life and antiretroviral activities of the formulations. NM2FTC demonstrated a >30-fold increase in macrophage and CD4+ T cell drug uptake with efficient conversion to triphosphates (FTC-TP). Intracellular FTC-TP protected macrophages against an HIV-1 challenge for 30 days. A single intramuscular injection of NM2FTC, at 45 mg/kg native drug equivalents, into Sprague Dawley rats resulted in sustained prodrug levels in blood, liver, spleen and lymph nodes and FTC-TP in lymph node and spleen cells at one month. In contrast, native FTC-TPs was present for one day. These results are an advance in the transformation of FTC into a LA agent.


Assuntos
Antirretrovirais/química , Antirretrovirais/síntese química , Emtricitabina/química , Pró-Fármacos/química , Pró-Fármacos/síntese química , Amidas/química , Animais , Humanos , Masculino , Ácidos Fosfóricos/química , Poloxâmero/química , Polifosfatos/química , Ratos , Ratos Sprague-Dawley
8.
Biomaterials ; 223: 119476, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31525692

RESUMO

A long acting (LA) hydrophobic and lipophilic lamivudine (3TC) was created as a phosphoramidate pronucleotide (designated M23TC). M23TC improved intracellular delivery of active triphosphate metabolites and enhanced antiretroviral and pharmacokinetic (PK) profiles over the native drug. A single treatment of human monocyte derived macrophages (MDM) with nanoformulated M23TC (NM23TC) improved drug uptake, retention, intracellular 3TC triphosphates and antiretroviral activities in MDM and CD4+ T cells. PK tests of NM23TC administered to Sprague Dawley rats demonstrated sustained prodrug and drug triphosphate levels in blood and tissues for 30 days. The development of NM23TC remains a substantive step forward in producing LA slow effective release antiretrovirals for future clinical translation.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Infecções por HIV/tratamento farmacológico , Lamivudina/administração & dosagem , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Cultivadas , HIV-1 , Humanos , Linfonodos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Nanomedicina/métodos , Nanopartículas/química , Pró-Fármacos , Coelhos , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos
9.
J Neuroimmune Pharmacol ; 14(1): 52-67, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29572681

RESUMO

Macrophages serve as host cells, inflammatory disease drivers and drug runners for human immunodeficiency virus infection and treatments. Low-level viral persistence continues in these cells in the absence of macrophage death. However, the cellular microenvironment changes as a consequence of viral infection with aberrant production of pro-inflammatory factors and promotion of oxidative stress. These herald viral spread from macrophages to neighboring CD4+ T cells and end organ damage. Virus replicates in tissue reservoir sites that include the nervous, pulmonary, cardiovascular, gut, and renal organs. However, each of these events are held in check by antiretroviral therapy. A hidden and often overlooked resource of the macrophage rests in its high cytoplasmic nuclear ratios that allow the cell to sense its environment and rid it of the cellular waste products and microbial pathogens it encounters. These phagocytic and intracellular killing sensing mechanisms can also be used in service as macrophages serve as cellular carriage depots for antiretroviral nanoparticles and are able to deliver medicines to infectious disease sites with improved therapeutic outcomes. These undiscovered cellular functions can lead to reductions in persistent infection and may potentially facilitate the eradication of residual virus to eliminate disease.


Assuntos
Infecções por HIV/virologia , Macrófagos/metabolismo , Macrófagos/virologia , Animais , Sistemas de Liberação de Medicamentos , HIV/fisiologia , Humanos , Latência Viral/fisiologia
10.
Oncotarget ; 7(15): 19430-44, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26840089

RESUMO

Amyloid precursor protein (APP) and its family members amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are type 1 transmembrane glycoproteins that are highly conserved across species. The transcriptional regulation of APP and APLP2 is similar but not identical, and the cleavage of both proteins is regulated by phosphorylation. APP has been implicated in Alzheimer's disease causation, and in addition to its importance in neurology, APP is deregulated in cancer cells. APLP2 is likewise overexpressed in cancer cells, and APLP2 and APP are linked to increased tumor cell proliferation, migration, and invasion. In this present review, we discuss the unfolding account of these APP family members' roles in cancer progression and metastasis.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Desdobramento de Proteína
11.
PLoS Pathog ; 12(1): e1005356, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26808628

RESUMO

Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections.


Assuntos
Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Interferons/imunologia , Viroses/imunologia , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , HIV , Infecções por HIV/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T/imunologia , Tuberculose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA