Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 75(5): 1154-1168, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34719787

RESUMO

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a malignancy arising from biliary epithelial cells of intra- and extrahepatic bile ducts with dismal prognosis and few nonsurgical treatments available. Despite recent success in the immunotherapy-based treatment of many tumor types, this has not been successfully translated to CCA. Mucosal-associated invariant T (MAIT) cells are cytotoxic innate-like T cells highly enriched in the human liver, where they are located in close proximity to the biliary epithelium. Here, we aimed to comprehensively characterize MAIT cells in intrahepatic (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS: Liver tissue from patients with CCA was used to study immune cells, including MAIT cells, in tumor-affected and surrounding tissue by immunohistochemistry, RNA-sequencing, and multicolor flow cytometry. The iCCA and pCCA tumor microenvironment was characterized by the presence of both cytotoxic T cells and high numbers of regulatory T cells. In contrast, MAIT cells were heterogenously lost from tumors compared to the surrounding liver tissue. This loss possibly occurred in response to increased bacterial burden within tumors. The residual intratumoral MAIT cell population exhibited phenotypic and transcriptomic alterations, but a preserved receptor repertoire for interaction with tumor cells. Finally, the high presence of MAIT cells in livers of iCCA patients predicted long-term survival in two independent cohorts and was associated with a favorable antitumor immune signature. CONCLUSIONS: MAIT cell tumor infiltration associates with favorable immunological fitness and predicts survival in CCA.


Assuntos
Neoplasias dos Ductos Biliares , Ductos Biliares Extra-Hepáticos , Colangiocarcinoma , Células T Invariantes Associadas à Mucosa , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Extra-Hepáticos/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Humanos , Microambiente Tumoral
2.
Sci Transl Med ; 13(599)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162753

RESUMO

The human biliary system, a mucosal barrier tissue connecting the liver and intestine, is an organ often affected by serious inflammatory and malignant diseases. Although these diseases are linked to immunological processes, the biliary system represents an unexplored immunological niche. By combining endoscopy-guided sampling of the biliary tree with a high-dimensional analysis approach, comprehensive mapping of the human biliary immunological landscape in patients with primary sclerosing cholangitis (PSC), a severe biliary inflammatory disease, was conducted. Major differences in immune cell composition in bile ducts compared to blood were revealed. Furthermore, biliary inflammation in patients with PSC was characterized by high presence of neutrophils and T cells as compared to control individuals without PSC. The biliary T cells displayed a CD103+CD69+ effector memory phenotype, a combined gut and liver homing profile, and produced interleukin-17 (IL-17) and IL-22. Biliary neutrophil infiltration in PSC associated with CXCL8, possibly produced by resident T cells, and CXCL16 was linked to the enrichment of T cells. This study uncovers the immunological niche of human bile ducts, defines a local immune network between neutrophils and biliary-resident T cells in PSC, and provides a resource for future studies of the immune responses in biliary disorders.


Assuntos
Sistema Biliar , Colangite Esclerosante , Humanos , Fígado , Neutrófilos , Linfócitos T
3.
Cell ; 183(7): 1946-1961.e15, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33306960

RESUMO

Lymphocyte migration is essential for adaptive immune surveillance. However, our current understanding of this process is rudimentary, because most human studies have been restricted to immunological analyses of blood and various tissues. To address this knowledge gap, we used an integrated approach to characterize tissue-emigrant lineages in thoracic duct lymph (TDL). The most prevalent immune cells in human and non-human primate efferent lymph were T cells. Cytolytic CD8+ T cell subsets with effector-like epigenetic and transcriptional signatures were clonotypically skewed and selectively confined to the intravascular circulation, whereas non-cytolytic CD8+ T cell subsets with stem-like epigenetic and transcriptional signatures predominated in tissues and TDL. Moreover, these anatomically distinct gene expression profiles were recapitulated within individual clonotypes, suggesting parallel differentiation programs independent of the expressed antigen receptor. Our collective dataset provides an atlas of the migratory immune system and defines the nature of tissue-emigrant CD8+ T cells that recirculate via TDL.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Animais , Diferenciação Celular , Células Clonais , Citotoxicidade Imunológica , Epigênese Genética , Humanos , Memória Imunológica , Linfonodos/citologia , Linfonodos/imunologia , Macaca mulatta , Subpopulações de Linfócitos T/imunologia , Transcrição Gênica , Transcriptoma/genética
4.
Front Immunol ; 10: 2692, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798596

RESUMO

Recent studies have demonstrated extraordinary diversity in peripheral blood human natural killer (NK) cells and have suggested environmental control of receptor expression patterns on distinct subsets of NK cells. However, tissue localization may influence NK cell differentiation to an even higher extent and less is known about the receptor repertoire of human tissue-resident NK cells. Advances in single-cell technologies have allowed higher resolution studies of these cells. Here, the power of high-dimensional flow cytometry was harnessed to unravel the complexity of NK cell repertoire diversity in liver since recent studies had indicated high heterogeneity within liver NK cells. A 29-color flow cytometry panel allowing simultaneous measurement of surface tissue-residency markers, activating and inhibitory receptors, differentiation markers, chemokine receptors, and transcription factors was established. This panel was applied to lymphocytes across three tissues (liver, peripheral blood, and tonsil) with different distribution of distinct NK cell subsets. Dimensionality reduction of this data ordered events according to their lineage, rather than tissue of origin. Notably, narrowing the scope of the analysis to the NK cell lineage in liver and peripheral blood separated subsets according to tissue, enabling phenotypic characterization of NK cell subpopulations in individual tissues. Such dimensionality reduction, coupled with a clustering algorithm, identified CD49e as the preferred marker for future studies of liver-resident NK cell subsets. We present a robust approach for diversity profiling of tissue-resident NK cells that can be applied in various homeostatic and pathological conditions such as reproduction, infection, and cancer.


Assuntos
Citometria de Fluxo/métodos , Células Matadoras Naturais/citologia , Fígado/citologia , Antígenos CD/metabolismo , Cor , Humanos , Células Matadoras Naturais/metabolismo , Fígado/imunologia , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Fenótipo
5.
Front Immunol ; 10: 2337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649664

RESUMO

Innate lymphoid cells (ILCs) are tissue resident cells with organ-specific properties. Here, we show that the central nervous system (CNS) encompasses ILCs. In particular, CD3-NK1.1+ cells present in the murine CNS comprise natural killer (NK) cells, ILC1s, intermediate ILC1s (intILC1s) and ex-ILC3s. We investigated the properties of CNS-ILC1s in comparison with CNS-NK cells during steady state and experimental autoimmune encephalomyelitis (EAE). ILC1s characteristically express CXCR3, CXCR6, DNAM-1, TRAIL, and CD200R and display heightened TNF-α production upon stimulation. In addition, ILC1s express perforin and are able to degranulate, although in a lesser extent than NK cells. Within the CNS compartments, ILC1s are enriched in the choroid plexus where very few NK cells are present, and also reside in the brain parenchyma and meninges. During EAE, ILC1s maintain stable IFN-γ and TNF-α levels while in NK cells the production of these cytokines increases as EAE progresses. Moreover, the amount of ILC1s and intILC1s increase in the parenchyma during EAE, but in contrast to NK cells, they show no signs of local proliferation. The upregulation in the inflamed brain of chemokines involved in ILC1 migration, such as CXCL9, CXCL10, and CXCL16 may lead to a recruitment of ILC1s from meninges or choroid plexus into the brain parenchyma. In sum, CNS-ILC1 phenotype, distribution and moderate inflammatory response during EAE suggest that they may act as gatekeepers involved in the control of neuroinflammation.


Assuntos
Encéfalo/imunologia , Movimento Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Células Matadoras Naturais/imunologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Encéfalo/patologia , Movimento Celular/genética , Citocinas/genética , Citocinas/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Células Matadoras Naturais/patologia , Camundongos , Camundongos Transgênicos
6.
Gastroenterology ; 157(4): 1067-1080.e9, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31229495

RESUMO

BACKGROUND & AIMS: Bile duct tumors are rare and have poor prognoses. Natural killer (NK) cells are frequent in human liver and infiltrate these tumors but do not control their progression. Responses of NK cells are regulated by NK immunoglobulin-like receptors (KIRs), which interact with HLA class I ligands. We aimed to characterize the features of the KIR gene loci and their ligands in patients with bile duct cancer (BDC). METHODS: We performed combined multidimensional characterization of genes that encode KIRs and their ligands in blood samples from patients with BDC from Sweden, followed for up to 8 years after diagnosis (n = 148), in 2 geographically matched cohorts of healthy individuals from Northern Europe (n = 204 and n = 900), and in healthy individuals from 6 geographically unrelated populations (n = 2917). We used real-time polymerase chain reaction, RNA sequencing, immunohistochemistry, and flow cytometry to evaluate NK-cell presence, as well as KIR and KIR-ligand expression in bile duct tumors and control tissues. RESULTS: Patients with bile duct tumors had multiple alterations at the KIR gene loci. KIR loci are grouped into genotypes that encode more inhibitory (group A) and more activating (group B) receptors, which can be subdivided into centromeric and telomeric fragments. Patients with BDC had a lower prevalence of KIR2DL3, which was linked to disequilibrium in centromeric A/B and B/B genotypes, compared with control individuals. The associations between KIRs and KIR ligands differed between patients with BDC and control individuals; patients had an altered balance between activating and inhibitory KIRs. KIR-positive NK cells infiltrated biliary tumors that expressed matched KIR ligands. CONCLUSIONS: In a multidimensional analysis of DNA from blood samples of patients with BDC in Europe, we found patients to have multiple alterations at the KIR and HLA gene loci compared with control individuals. These alterations might affect NK-cell tumor surveillance. NK cells from bile duct tumors expressed KIRs and were found in tumors that expressed cognate ligands. This should be considered in development of immune-based therapies for BDC.


Assuntos
Neoplasias dos Ductos Biliares/genética , Antígenos HLA/genética , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptores KIR/genética , Idoso , Idoso de 80 Anos ou mais , Ásia , Neoplasias dos Ductos Biliares/sangue , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/patologia , Estudos de Casos e Controles , Europa (Continente) , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Antígenos HLA/sangue , Antígenos HLA/imunologia , Humanos , Células Matadoras Naturais/patologia , Ligantes , Desequilíbrio de Ligação , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , América do Norte , Fenótipo , Prognóstico , Receptores KIR/sangue , Receptores KIR/imunologia , Receptores KIR2DL3/genética , Receptores KIR2DL3/imunologia , Fatores de Risco , América do Sul , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 110(19): 7916-21, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23620518

RESUMO

It is well-established that subcompartments of endoplasmic reticulum (ER) are in physical contact with the mitochondria. These lipid raft-like regions of ER are referred to as mitochondria-associated ER membranes (MAMs), and they play an important role in, for example, lipid synthesis, calcium homeostasis, and apoptotic signaling. Perturbation of MAM function has previously been suggested in Alzheimer's disease (AD) as shown in fibroblasts from AD patients and a neuroblastoma cell line containing familial presenilin-2 AD mutation. The effect of AD pathogenesis on the ER-mitochondria interplay in the brain has so far remained unknown. Here, we studied ER-mitochondria contacts in human AD brain and related AD mouse and neuronal cell models. We found uniform distribution of MAM in neurons. Phosphofurin acidic cluster sorting protein-2 and σ1 receptor, two MAM-associated proteins, were shown to be essential for neuronal survival, because siRNA knockdown resulted in degeneration. Up-regulated MAM-associated proteins were found in the AD brain and amyloid precursor protein (APP)Swe/Lon mouse model, in which up-regulation was observed before the appearance of plaques. By studying an ER-mitochondria bridging complex, inositol-1,4,5-triphosphate receptor-voltage-dependent anion channel, we revealed that nanomolar concentrations of amyloid ß-peptide increased inositol-1,4,5-triphosphate receptor and voltage-dependent anion channel protein expression and elevated the number of ER-mitochondria contact points and mitochondrial calcium concentrations. Our data suggest an important role of ER-mitochondria contacts and cross-talk in AD pathology.


Assuntos
Doença de Alzheimer/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Receptor Cross-Talk , Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Células CHO , Cálcio/metabolismo , Linhagem Celular Tumoral , Cricetinae , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato , Microdomínios da Membrana/metabolismo , Camundongos , Mutação , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores sigma/metabolismo , Frações Subcelulares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA