Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Structure ; 31(9): 1038-1051.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37392738

RESUMO

The Ebola virus matrix protein VP40 mediates viral budding and negatively regulates viral RNA synthesis. The mechanisms by which these two functions are exerted and regulated are unknown. Using a high-resolution crystal structure of Sudan ebolavirus (SUDV) VP40, we show here that two cysteines in the flexible C-terminal arm of VP40 form a stabilizing disulfide bridge. Notably, the two cysteines are targets of posttranslational redox modifications and interact directly with the host`s thioredoxin system. Mutation of the cysteines impaired the budding function of VP40 and relaxed its inhibitory role for viral RNA synthesis. In line with these results, the growth of recombinant Ebola viruses carrying cysteine mutations was impaired and the released viral particles were elongated. Our results revealed the exact positions of the cysteines in the C-terminal arm of SUDV VP40. The cysteines and/or their redox status are critically involved in the differential regulation of viral budding and viral RNA synthesis.


Assuntos
Ebolavirus , Proteínas da Matriz Viral , Ebolavirus/genética , Ebolavirus/metabolismo , Mutação , Oxirredução , Sudão , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Humanos
2.
J Immunol Methods ; 490: 112958, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412174

RESUMO

The current Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) pandemic is a public health emergency of international concern. Sensitive and precise diagnostic tools are urgently needed. In this study, we developed a SARS-CoV-2 spike (S1) protein enzyme-linked immunosorbent assay (ELISA) to detect SARS-CoV-2-specific antibodies. The SARS-CoV-2 S1 ELISA was found to be specific [97.8% (95% CI, 96.7% - 98.5%)], reproducible and precise (intra-assay coefficient of variability (CV) 5.3%, inter-assay CV 7.9%). A standard curve and the interpolation of arbitrary ELISA units per milliliter served to reduce the variability between different tests and operators. Cross-reactivity to other human coronaviruses was addressed by using sera positive for MERS-CoV- and hCoV HKU1-specific antibodies. Monitoring antibody development in various samples of twenty-three and single samples of twenty-nine coronavirus disease 2019 (COVID-19) patients revealed seroconversion and neutralizing antibodies against authentic SARS-CoV-2 in all cases. The comparison of the SARS-CoV-2 (S1) ELISA with a commercially available assay showed a better sensitivity for the in-house ELISA. The results demonstrate a high reproducibility, specificity and sensitivity of the newly developed ELISA, which is suitable for the detection of SARS-CoV-2 S1 protein-specific antibody responses.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Células Epiteliais/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Chlorocebus aethiops , Ensaios Enzimáticos , Ensaio de Imunoadsorção Enzimática , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Soroconversão , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
3.
J Infect Dis ; 212 Suppl 2: S160-6, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26038396

RESUMO

BACKGROUND: Transport of ebolavirus (EBOV) nucleocapsids from perinuclear viral inclusions, where they are formed, to the site of budding at the plasma membrane represents an obligatory step of virus assembly. Until now, no live-cell studies on EBOV nucleocapsid transport have been performed, and participation of host cellular factors in this process, as well as the trajectories and speed of nucleocapsid transport, remain unknown. METHODS: Live-cell imaging of EBOV-infected cells treated with different inhibitors of cellular cytoskeleton was used for the identification of cellular proteins involved in the nucleocapsid transport. EBOV nucleocapsids were visualized by expression of green fluorescent protein (GFP)-labeled nucleocapsid viral protein 30 (VP30) in EBOV-infected cells. RESULTS: Incorporation of the fusion protein VP30-GFP into EBOV nucleocapsids was confirmed by Western blot and indirect immunofluorescence analyses. Importantly, VP30-GFP fluorescence was readily detectable in the densely packed nucleocapsids inside perinuclear viral inclusions and in the dispersed rod-like nucleocapsids located outside of viral inclusions. Live-cell imaging of EBOV-infected cells revealed exit of single nucleocapsids from the viral inclusions and their intricate transport within the cytoplasm before budding at the plasma membrane. Nucleocapsid transport was arrested upon depolymerization of actin filaments (F-actin) and inhibition of the actin-nucleating Arp2/3 complex, and it was not altered upon depolymerization of microtubules or inhibition of N-WASP. Actin comet tails were often detected at the rear end of nucleocapsids. Marginally located nucleocapsids entered filopodia, moved inside, and budded from the tip of these thin cellular protrusions. CONCLUSIONS: Live-cell imaging of EBOV-infected cells revealed actin-dependent long-distance transport of EBOV nucleocapsids before budding at the cell surface. These findings provide useful insights into EBOV assembly and have potential application in the development of antivirals.


Assuntos
Actinas/metabolismo , Transporte Biológico/fisiologia , Ebolavirus/metabolismo , Nucleocapsídeo/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Pseudópodes/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo
4.
Cell Microbiol ; 15(2): 270-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23186212

RESUMO

The key player to assemble the filamentous Marburg virus particles is the matrix protein VP40 which orchestrates recruitment of nucleocapsid complexes and the viral glycoprotein GP to the budding sites at the plasma membrane. Here, VP40 induces the formation of the viral particles, determines their morphology and excludes cellular proteins from the virions. Budding takes place at filopodia in non-polarized cells and at the basolateral cell pole in polarized epithelial cells. Molecular basis of how VP40 exerts its multifunctional role in these different processes is currently under investigation. Here we summarize recent data on structure-function relationships of VP40 and GP in connection with their function in assembly. Questions concerning the complex particle assembly, budding and release remaining enigmatic are addressed. Cytoplasmic domains of viral surface proteins often serve as a connection to the viral matrix protein or as binding sites for further viral or cellular proteins. A cooperation of MARV GP and VP40 building up the viral envelope can be proposed and is discussed in more detail in this review, as the cytoplasmic domain of GP represents an obvious interaction candidate because of its localization adjacent to the VP40 layer. Interestingly, truncation of the short cytoplasmic domain of GP neither inhibited interaction with VP40 nor incorporation of GP into progeny viral particles. Based on reverse genetics we generated recombinant virions expressing a GP mutant without the cytoplasmic tail. Investigations revealed attenuation in virus growth and an obvious defect in entry. Further investigations showed that the truncation of the cytoplasmic domain of GP impaired the structural integrity of the ectodomain, whichconsequently had impact on entry steps downstream of virus binding. Our data indicated that changes in the cytoplasmic domain are relayed over the lipid membrane to alter the function of the ectodomain.


Assuntos
Glicoproteínas/metabolismo , Marburgvirus/metabolismo , Proteínas de Membrana/metabolismo , Nucleocapsídeo/metabolismo , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus/fisiologia , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Citoplasma/virologia , Glicoproteínas/genética , Humanos , Marburgvirus/genética , Marburgvirus/ultraestrutura , Proteínas de Membrana/genética , Nucleocapsídeo/genética , Nucleocapsídeo/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Células Vero , Proteínas da Matriz Viral/genética
5.
PLoS Negl Trop Dis ; 5(5): e1137, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21572983

RESUMO

The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV) and the hemorrhagic fever-causing Junin virus (JUNV), in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-ß and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation.


Assuntos
Arenavirus do Novo Mundo/imunologia , Arenavirus do Novo Mundo/patogenicidade , Citocinas/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Animais , Infecções por Arenaviridae , Células Cultivadas , Chlorocebus aethiops , Humanos , Macrófagos/virologia , Monócitos/virologia
6.
Am J Pathol ; 175(3): 1178-86, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19700749

RESUMO

SC35M is a mouse-adapted variant of the highly pathogenic avian influenza virus SC35. We have previously shown that interspecies adaptation is mediated by mutations in the viral polymerase and that it is paralleled by the acquisition of high pathogenicity for mice. In the present study, we have compared virus spread and organ tropism of SC35 and SC35M in mice. We show that SC35 virus causes mild bronchiolitis in these animals, whereas infection with the mouse-adapted SC35M virus leads to severe hemorrhagic pneumonia with dissemination to other organs, including the brain. In SC35M-infected animals, viral RNA and viral antigen were detected in monocytes and macrophages, and SC35M, unlike SC35, replicated in lymphocyte and macrophage cultures in vitro. SC35M did not induce an adequate cytokine response but, unlike SC35, caused severe lymphopenia in mice. These observations suggest that the high efficiency of the SC35M polymerase is responsible for infection and depletion of lymphocytes and other white blood cells, which results in immune suppression and systemic virus spread.


Assuntos
Terapia de Imunossupressão , Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/fisiopatologia , Infecções por Orthomyxoviridae/virologia , Animais , Antígenos Virais/análise , Bronquiolite/etiologia , Bronquiolite/fisiopatologia , Células Cultivadas , Embrião de Galinha , Vírus da Influenza A Subtipo H7N7/genética , Vírus da Influenza A Subtipo H7N7/patogenicidade , Vírus da Influenza A/genética , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Monócitos/imunologia , Monócitos/virologia , Infecções por Orthomyxoviridae/complicações , Pneumonia Viral/etiologia , Pneumonia Viral/fisiopatologia , RNA Viral/análise
7.
PLoS Pathog ; 4(2): e11, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18248089

RESUMO

We have previously reported that mutations in the polymerase proteins PB1, PB2, PA, and the nucleocapsid protein NP resulting in enhanced transcription and replication activities in mammalian cells are responsible for the conversion of the avian influenza virus SC35 (H7N7) into the mouse-adapted variant SC35M. We show now that adaptive mutations D701N in PB2 and N319K in NP enhance binding of these proteins to importin alpha1 in mammalian cells. Enhanced binding was paralleled by transient nuclear accumulation and cytoplasmic depletion of importin alpha1 as well as increased transport of PB2 and NP into the nucleus of mammalian cells. In avian cells, enhancement of importin alpha1 binding and increased nuclear transport were not observed. These findings demonstrate that adaptation of the viral polymerase to the nuclear import machinery plays an important role in interspecies transmission of influenza virus.


Assuntos
Antígenos Virais/metabolismo , Interações Hospedeiro-Patógeno , Fragmentos de Peptídeos/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas Virais/metabolismo , alfa Carioferinas/metabolismo , Animais , Antígenos Virais/genética , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Embrião de Galinha , Regulação Viral da Expressão Gênica , Humanos , Vírus da Influenza A Subtipo H7N7/patogenicidade , Vírus da Influenza A Subtipo H7N7/fisiologia , Mutação , Fragmentos de Peptídeos/genética , Ligação Proteica , Proteínas do Core Viral/genética , Replicação Viral , alfa Carioferinas/genética
8.
J Virol ; 79(10): 6449-58, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15858028

RESUMO

Attachment of palmitic acid to cysteine residues is a common modification of viral glycoproteins. The influenza virus hemagglutinin (HA) has three conserved cysteine residues at its C terminus serving as acylation sites. To analyze the structural and functional roles of acylation, we have generated by reverse genetics a series of mutants (Ac1, Ac2, and Ac3) of fowl plague virus (FPV) containing HA in which the acylation sites at positions 551, 559, and 562, respectively, have been abolished. When virus growth in CV1 and MDCK cells was analyzed, similar amounts of virus particles were observed with the mutants and the wild type. Protein patterns and lipid compositions, characterized by high cholesterol and glycolipid contents, were also indistinguishable. However, compared to wild-type virus, Ac2 and Ac3 virions were 10 and almost 1,000 times less infectious, respectively. Fluorescence transfer experiments revealed that loss of acyl chains impeded formation of fusion pores, whereas hemifusion was not affected. When the affinity to detergent-insoluble glycolipid (DIG) domains was analyzed by Triton X-100 treatment of infected cells and virions, solubilization of Ac2 and Ac3 HAs was markedly facilitated. These observations show that acylation of the cytoplasmic tail, while not necessary for targeting to DIG domains, promotes the firm anchoring and retention of FPV HA in these domains. They also indicate that tight DIG association of FPV HA is essential for formation of fusion pores and thus probably for infectivity.


Assuntos
Antígenos Virais/metabolismo , Membrana Celular/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Acilação , Sequência de Aminoácidos , Animais , Fusão Celular , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/patogenicidade , Dados de Sequência Molecular , Octoxinol/farmacologia , Alinhamento de Sequência
9.
J Pathol ; 200(3): 348-56, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12845631

RESUMO

Mutations in the human homologue of Drosophila Patched1 (PTCH1) have been found in several common tumours including basal cell carcinoma, medulloblastoma, and rhabdomyosarcoma (RMS). Medulloblastoma and RMS are also present in the murine model for Ptch1 deficiency. Tumours in heterozygous Ptch1(neo67/+) mice consistently exhibit elevated transcript levels of the proto-oncogene Gli1, of Ptch1 itself, and of the insulin-like growth factor 2 (Igf2). The present study has investigated additional molecular changes in RMSs of Ptch1 mutant mice by means of microarray analysis and protein expression analysis. The data show activation of the cell survival-promoting Akt/protein kinase B (Pkb). Furthermore, RMSs express increased levels of the anti-apoptotic protein Bcl-2 and of genes and proteins known to inhibit cell proliferation, including Gadd45a and p27kip1. Taken together, the data suggest that the formation of RMSs in Ptch1 mutants is associated with the ability of tumour cells to resist apoptosis.


Assuntos
Rabdomiossarcoma/genética , Animais , Apoptose/fisiologia , Northern Blotting , Western Blotting/métodos , DNA de Neoplasias/análise , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Camundongos , Microscopia Eletrônica/métodos , Músculo Esquelético/metabolismo , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proto-Oncogene Mas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Rabdomiossarcoma/fisiopatologia , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA