Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Hepatology ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626349

RESUMO

HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.

2.
Cell Rep ; 42(12): 113540, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060449

RESUMO

Store-operated Ca2+ entry (SOCE) mediated by stromal interacting molecule (STIM)-gated ORAI channels at endoplasmic reticulum (ER) and plasma membrane (PM) contact sites maintains adequate levels of Ca2+ within the ER lumen during Ca2+ signaling. Disruption of ER Ca2+ homeostasis activates the unfolded protein response (UPR) to restore proteostasis. Here, we report that the UPR transducer inositol-requiring enzyme 1 (IRE1) interacts with STIM1, promotes ER-PM contact sites, and enhances SOCE. IRE1 deficiency reduces T cell activation and human myoblast differentiation. In turn, STIM1 deficiency reduces IRE1 signaling after store depletion. Using a CaMPARI2-based Ca2+ genome-wide screen, we identify CAMKG2 and slc105a as SOCE enhancers during ER stress. Our findings unveil a direct crosstalk between SOCE and UPR via IRE1, acting as key regulator of ER Ca2+ and proteostasis in T cells and muscles. Under ER stress, this IRE1-STIM1 axis boosts SOCE to preserve immune cell functions, a pathway that could be targeted for cancer immunotherapy.


Assuntos
Sinalização do Cálcio , Cálcio , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Membrana Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Molécula 1 de Interação Estromal/metabolismo
3.
Mol Ther ; 31(7): 2240-2256, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016577

RESUMO

Alteration in the buffering capacity of the proteostasis network is an emerging feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is the main adaptive pathway to cope with protein folding stress at the ER. Inositol-requiring enzyme-1 (IRE1) operates as a central ER stress sensor, enabling the establishment of adaptive and repair programs through the control of the expression of the transcription factor X-box binding protein 1 (XBP1). To artificially enforce the adaptive capacity of the UPR in the AD brain, we developed strategies to express the active form of XBP1 in the brain. Overexpression of XBP1 in the nervous system using transgenic mice reduced the load of amyloid deposits and preserved synaptic and cognitive function. Moreover, local delivery of XBP1 into the hippocampus of an 5xFAD mice using adeno-associated vectors improved different AD features. XBP1 expression corrected a large proportion of the proteomic alterations observed in the AD model, restoring the levels of several synaptic proteins and factors involved in actin cytoskeleton regulation and axonal growth. Our results illustrate the therapeutic potential of targeting UPR-dependent gene expression programs as a strategy to ameliorate AD features and sustain synaptic function.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Estresse do Retículo Endoplasmático/genética , Camundongos Transgênicos , Proteômica , Proteostase/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética
5.
Sci Signal ; 15(741): eabm7524, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35857637

RESUMO

The endoplasmic reticulum (ER) is the largest organelle of the cell and participates in multiple essential functions, including the production of secretory proteins, lipid synthesis, and calcium storage. Sustaining proteostasis requires an intimate coupling with energy production. Mitochondrial respiration evolved to be functionally connected to ER physiology through a physical interface between both organelles known as mitochondria-associated membranes. This quasi-synaptic structure acts as a signaling hub that tunes the function of both organelles in a bidirectional manner and controls proteostasis, cell death pathways, and mitochondrial bioenergetics. Here, we discuss the main signaling mechanisms governing interorganellar communication and their putative role in diseases including cancer and neurodegeneration.


Assuntos
Retículo Endoplasmático , Proteostase , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
6.
Cells ; 11(12)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35740989

RESUMO

Alzheimer's disease (AD) is the most prevalent age-associated neurodegenerative disease. A decrease in autophagy during aging contributes to brain disorders by accumulating potentially toxic substrates in neurons. Rubicon is a well-established inhibitor of autophagy in all cells. However, Rubicon participates in different pathways depending on cell type, and little information is currently available on neuronal Rubicon's role in the AD context. Here, we investigated the cell-specific expression of Rubicon in postmortem brain samples from AD patients and 5xFAD mice and its impact on amyloid ß burden in vivo and neuroblastoma cells. Further, we assessed Rubicon levels in human-induced pluripotent stem cells (hiPSCs), derived from early-to-moderate AD and in postmortem samples from severe AD patients. We found increased Rubicon levels in AD-hiPSCs and postmortem samples and a notable Rubicon localization in neurons. In AD transgenic mice lacking Rubicon, we observed intensified amyloid ß burden in the hippocampus and decreased Pacer and p62 levels. In APP-expressing neuroblastoma cells, increased APP/amyloid ß secretion in the medium was found when Rubicon was absent, which was not observed in cells depleted of Atg5, essential for autophagy, or Rab27a, required for exosome secretion. Our results propose an uncharacterized role of Rubicon on APP/amyloid ß homeostasis, in which neuronal Rubicon is a repressor of APP/amyloid ß secretion, defining a new way to target AD and other similar diseases therapeutically.


Assuntos
Doença de Alzheimer , Proteínas Relacionadas à Autofagia , Neuroblastoma , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
8.
Methods Mol Biol ; 2378: 141-168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985699

RESUMO

The endoplasmic reticulum (ER) stress sensor IRE1 is a a major player of the unfolded protein response (UPR), the main pathway driving adaptation processes to restore proteostasis.  In addition, overactivation of IRE1 signaling contributes to a variety of pathologies including diabetes, neurodegenerative diseases, and cancer. Under ER stress, IRE1 auto-transphosphorylates and oligomerizes, triggering the activation of its endoribonuclease domain located in the cytosolic region. Active IRE1 catalyzes the splicing of the mRNA encoding for the XBP1 transcription factor, in addition to degrade several RNAs through a process known as regulated IRE1-dependent decay of mRNA (RIDD). Besides its role as an UPR transducer, several posttranslational modifications and protein-protein interactions can regulate IRE1 activity and modulate its signaling in the absence of stress. Thus, investigating the function of IRE1 in physiology and disease requires the use of complementary approaches. Here, we provide detailed protocols to perform four different assays to study IRE1 activation and signaling: (i) Phos-tag gels to evaluate the phosphorylation status of IRE1, (ii) microscopy using TREX-IRE1-GFP cells to measure IRE1 oligomerization, (iii) conventional RT-PCR to assess XBP1 mRNA processing, and (iv) quantitative PCR to determine the levels of canonical UPR target genes and the degradation of several mRNAs that are target of RIDD. We propose to use these experimental strategies as "gold standards" to study IRE1 signaling.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Resposta a Proteínas não Dobradas
9.
Cell Death Dis ; 12(11): 1039, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725331

RESUMO

Pro-apoptotic multi-domain proteins of the BCL2 family such as BAX and BAK are well known for their important role in the induction of mitochondrial outer membrane permeabilization (MOMP), which is the rate-limiting step of the intrinsic pathway of apoptosis. Human or mouse cells lacking both BAX and BAK (due to a double knockout, DKO) are notoriously resistant to MOMP and cell death induction. Here we report the surprising finding that BAX/BAK DKO cells proliferate less than control cells expressing both BAX and BAK (or either BAX or BAK) when they are driven into tetraploidy by transient exposure to the microtubule inhibitor nocodazole. Mechanistically, in contrast to their BAX/BAK-sufficient controls, tetraploid DKO cells activate a senescent program, as indicated by the overexpression of several cyclin-dependent kinase inhibitors and the activation of ß-galactosidase. Moreover, DKO cells manifest alterations in ionomycin-mobilizable endoplasmic reticulum (ER) Ca2+ stores and store-operated Ca2+ entry that are affected by tetraploidization. DKO cells manifested reduced expression of endogenous sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (Serca2a) and transfection-enforced reintroduction of Serca2a, or reintroduction of an ER-targeted variant of BAK into DKO cells reestablished the same pattern of Ca2+ fluxes as observed in BAX/BAK-sufficient control cells. Serca2a reexpression and ER-targeted BAK also abolished the tetraploidy-induced senescence of DKO cells, placing ER Ca2+ fluxes downstream of the regulation of senescence by BAX/BAK. In conclusion, it appears that BAX/BAK prevent the induction of a tetraploidization-associated senescence program. Speculatively, this may contribute to the low incidence of cancers in BAX/BAK DKO mice and explain why human cancers rarely lose the expression of both BAX and BAK.


Assuntos
Tetraploidia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Senescência Celular , Células Clonais , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína X Associada a bcl-2/deficiência
10.
Mol Ther ; 29(5): 1862-1882, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545358

RESUMO

Alteration to endoplasmic reticulum (ER) proteostasis is observed in a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene expression programs through the concerted action of the transcription factors ATF4, ATF6f, and XBP1s. Although UPR signaling is generally studied as unique linear signaling branches, correlative evidence suggests that ATF6f and XBP1s may physically interact to regulate a subset of UPR target genes. In this study, we designed an ATF6f/XBP1s fusion protein termed UPRplus that behaves as a heterodimer in terms of its selective transcriptional activity. Cell-based studies demonstrated that UPRplus has a stronger effect in reducing the abnormal aggregation of mutant huntingtin and α-synuclein when compared to XBP1s or ATF6 alone. We developed a gene transfer approach to deliver UPRplus into the brain using adeno-associated viruses (AAVs) and demonstrated potent neuroprotection in vivo in preclinical models of Parkinson's disease and Huntington's disease. These results support the concept in which directing UPR-mediated gene expression toward specific adaptive programs may serve as a possible strategy to optimize the beneficial effects of the pathway in different disease conditions.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Proteína Huntingtina/genética , Masculino , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Proteína 1 de Ligação a X-Box/genética , alfa-Sinucleína/genética
11.
Trends Cell Biol ; 30(11): 881-891, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33036871

RESUMO

Sustaining both proteome and genome integrity (GI) requires the integration of a wide range of mechanisms and signaling pathways. These comprise, in particular, the unfolded protein response (UPR) and the DNA damage response (DDR). These adaptive mechanisms take place respectively in the endoplasmic reticulum (ER) and in the nucleus. UPR and DDR alterations are associated with aging and with pathologies such as degenerative diseases, metabolic and inflammatory disorders, and cancer. We discuss the emerging signaling crosstalk between UPR stress sensors and the DDR, as well as their involvement in cancer biology.


Assuntos
Dano ao DNA , Retículo Endoplasmático/metabolismo , Proteostase , Animais , Dano ao DNA/genética , Instabilidade Genômica , Humanos , Modelos Biológicos , Proteostase/genética , Transdução de Sinais
12.
Cell Death Dis ; 11(8): 648, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32811828

RESUMO

Caveolin-1 (CAV1), is a broadly expressed, membrane-associated scaffolding protein that acts both, as a tumor suppressor and a promoter of metastasis, depending on the type of cancer and stage. CAV1 is downregulated in human tumors, tumor cell lines and oncogene-transformed cells. The tumor suppressor activity of CAV1 is generally associated with its presence at the plasma membrane, where it participates, together with cavins, in the formation of caveolae and also has been suggested to interact with and inhibit a wide variety of proteins through interactions mediated by the scaffolding domain. However, a pool of CAV1 is also located at the endoplasmic reticulum (ER), modulating the secretory pathway in a manner dependent on serine-80 (S80) phosphorylation. In melanoma cells, CAV1 expression suppresses tumor formation, but the protein is largely absent from the plasma membrane and does not form caveolae. Perturbations to the function of the ER are emerging as a central driver of cancer, highlighting the activation of the unfolded protein response (UPR), a central pathway involved in stress mitigation. Here we provide evidence indicating that the expression of CAV1 represses the activation of the UPR in vitro and in solid tumors, reflected in the attenuation of PERK and IRE1α signaling. These effects correlated with increased susceptibility of cells to ER stress and hypoxia. Interestingly, the tumor suppressor activity of CAV1 was abrogated by site-directed mutagenesis of S80, correlating with a reduced ability to repress the UPR. We conclude that the tumor suppression by CAV1 involves the attenuation of the UPR, and identified S80 as essential in this context. This suggests that intracellular CAV1 regulates cancer through alternative signaling outputs.


Assuntos
Caveolina 1/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Caveolina 1/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo
13.
Nat Rev Mol Cell Biol ; 21(8): 421-438, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32457508

RESUMO

Cellular stress induced by the abnormal accumulation of unfolded or misfolded proteins at the endoplasmic reticulum (ER) is emerging as a possible driver of human diseases, including cancer, diabetes, obesity and neurodegeneration. ER proteostasis surveillance is mediated by the unfolded protein response (UPR), a signal transduction pathway that senses the fidelity of protein folding in the ER lumen. The UPR transmits information about protein folding status to the nucleus and cytosol to adjust the protein folding capacity of the cell or, in the event of chronic damage, induce apoptotic cell death. Recent advances in the understanding of the regulation of UPR signalling and its implications in the pathophysiology of disease might open new therapeutic avenues.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia , Animais , Apoptose/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Humanos , Neoplasias/metabolismo , Dobramento de Proteína , Proteínas/metabolismo , Transdução de Sinais
14.
Nat Commun ; 11(1): 2401, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409639

RESUMO

The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis.


Assuntos
Sobrevivência Celular/genética , Reparo do DNA , Proteínas de Drosophila/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA/genética , Animais , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster , Endorribonucleases/genética , Feminino , Fibroblastos , Instabilidade Genômica , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Proteostase/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , RNA Mensageiro/metabolismo
15.
Arch Toxicol ; 94(1): 205-217, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919559

RESUMO

Inflammation has been recognized as essential for restorative regeneration. Here, we analyzed the sequential processes during onset of liver injury and subsequent regeneration based on time-resolved transcriptional regulatory networks (TRNs) to understand the relationship between inflammation, mature organ function, and regeneration. Genome-wide expression and TRN analysis were performed time dependently in mouse liver after acute injury by CCl4 (2 h, 8 h, 1, 2, 4, 6, 8, 16 days), as well as lipopolysaccharide (LPS, 24 h) and compared to publicly available data after tunicamycin exposure (mouse, 6 h), hepatocellular carcinoma (HCC, mouse), and human chronic liver disease (non-alcoholic fatty liver, HBV infection and HCC). Spatiotemporal investigation differentiated lobular zones for signaling and transcription factor expression. Acute CCl4 intoxication induced expression of gene clusters enriched for inflammation and stress signaling that peaked between 2 and 24 h, accompanied by a decrease of mature liver functions, particularly metabolic genes. Metabolism decreased not only in pericentral hepatocytes that underwent CCl4-induced necrosis, but extended to the surviving periportal hepatocytes. Proliferation and tissue restorative TRNs occurred only later reaching a maximum at 48 h. The same upstream regulators (e.g. inhibited RXR function) were implicated in increased inflammation and suppressed metabolism. The concomitant inflammation/metabolism TRN occurred similarly after acute LPS and tunicamycin challenges, in chronic mouse models and also in human liver diseases. Downregulation of metabolic genes occurs concomitantly to induce inflammation-associated genes as an early response and appears to be initiated by similar upstream regulators in acute and chronic liver diseases in humans and mice. In the acute setting, proliferation and restorative regeneration associated TRNs peak only later when metabolism is already suppressed.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Redes Reguladoras de Genes , Hepatite Crônica/genética , Animais , Tetracloreto de Carbono/toxicidade , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hepatite B/genética , Hepatite B/metabolismo , Hepatite Crônica/fisiopatologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
16.
J Hepatol ; 72(1): 183-196, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31849347

RESUMO

Autophagy is an evolutionarily ancient process whereby eukaryotic cells eliminate disposable or potentially dangerous cytoplasmic material, to support bioenergetic metabolism and adapt to stress. Accumulating evidence indicates that autophagy operates as a critical quality control mechanism for the maintenance of hepatic homeostasis in both parenchymal (hepatocytes) and non-parenchymal (stellate cells, sinusoidal endothelial cells, Kupffer cells) compartments. In line with this notion, insufficient autophagy has been aetiologically involved in the pathogenesis of multiple liver disorders, including alpha-1-antitrypsin deficiency, Wilson disease, non-alcoholic steatohepatitis, liver fibrosis and hepatocellular carcinoma. Here, we critically discuss the importance of functional autophagy for hepatic physiology, as well as the mechanisms whereby defects in autophagy cause liver disease.


Assuntos
Adaptação Fisiológica , Metabolismo Energético , Hepatopatias/metabolismo , Fígado/metabolismo , Macroautofagia , Mitofagia , Estresse Fisiológico , Animais , Retículo Endoplasmático/metabolismo , Homeostase , Humanos
17.
Trends Pharmacol Sci ; 40(9): 684-695, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31377018

RESUMO

Abnormally high levels of misfolded proteins in the endoplasmic reticulum (ER) lumen result in a stress state that contributes to the progression of several pathological conditions including diabetes, cancer, neurodegeneration, and immune dysregulation. ER stress triggers a dynamic signaling pathway known as the unfolded protein response (UPR). The UPR enforces adaptive or cell death programs by integrating information about the intensity and duration of the stress stimuli. Thus, depending on the disease context, ER stress signaling can be beneficial or detrimental. We discuss current efforts to develop small molecules to target distinct components of the UPR, and their possible applications in treating human disease, focusing on neurodegenerative diseases, metabolic disorders, and cancer.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Doenças Metabólicas/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Retículo Endoplasmático/metabolismo , Humanos , Doenças Metabólicas/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteostase/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
18.
Nat Chem Biol ; 15(8): 764-775, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31320759

RESUMO

Accumulation of unfolded proteins at the endoplasmic reticulum (ER) is a salient attribute of many human diseases including obesity, liver disorders, cancer, diabetes and neurodegeneration. To restore ER proteostasis, cells activate the unfolded protein response (UPR), a signaling pathway that imposes adaptive programs or triggers apoptosis of damaged cells. The UPR is critical to sustain the normal function of specialized secretory cells (i.e., pancreatic ß cells and B lymphocytes) and to control the production of lipids and cholesterol in the liver. In the context of disease, adaptive UPR responses have been linked to the growth of solid tumors, whereas chronic ER stress contributes to cell dysfunction in brain diseases, metabolic syndromes, among other conditions. Here we discuss recent developments in the design and optimization of novel compounds to manipulate UPR signaling and their efficacy in various disease models.


Assuntos
Sistemas de Liberação de Medicamentos , Transdução de Sinais , Resposta a Proteínas não Dobradas , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
19.
Cancers (Basel) ; 11(5)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064137

RESUMO

Endoplasmic reticulum (ER) proteostasis is often altered in tumor cells due to intrinsic (oncogene expression, aneuploidy) and extrinsic (environmental) challenges. ER stress triggers the activation of an adaptive response named the Unfolded Protein Response (UPR), leading to protein translation repression, and to the improvement of ER protein folding and clearance capacity. The UPR is emerging as a key player in malignant transformation and tumor growth, impacting on most hallmarks of cancer. As such, the UPR can influence cancer cells' migration and invasion properties. In this review, we overview the involvement of the UPR in cancer progression. We discuss its cross-talks with the cell migration and invasion machinery. Specific aspects will be covered including extracellular matrix (ECM) remodeling, modification of cell adhesion, chemo-attraction, epithelial-mesenchymal transition (EMT), modulation of signaling pathways associated with cell mobility, and cytoskeleton remodeling. The therapeutic potential of targeting the UPR to treat cancer will also be considered with specific emphasis in the impact on metastasis and tissue invasion.

20.
Biochem Biophys Res Commun ; 503(3): 1385-1393, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30025892

RESUMO

Parkinson's disease (PD) compromises motor control due to the loss of dopaminergic neurons in the substantia nigra pars compacta. At the histopathological level, PD is characterized by the accumulation of Lewy bodies, large protein inclusions containing aggregated αSynuclein (αSyn). The progression of PD involves the spreading of αSyn misfolding through the brain mediated by a prion-like mechanism, where the protein is transferred between cells. Here we report that αSyn internalization is a dynamic process, where the protein transits through different sub-cellular compartments. Importantly, cells incorporating αSyn develop larger protein-like inclusions when compared to αSyn producing cells. We developed a new tool to monitor cell-to-cell transfer of αSyn in vivo using an adeno-associated viral (AAV) vector expressing αSyn fused to a red fluorescent protein in addition to soluble EGFP to label donor cells. Intra-nigral delivery of this reporter AAV construct allowed the visualization of αSyn incorporation into surrounding neurons. This work provides a new tool to study αSyn cell-to-cell transfer in vivo and may open new opportunities to study PD pathogenesis.


Assuntos
Dependovirus/metabolismo , Modelos Biológicos , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA