Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Z Med Phys ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39414456

RESUMO

In 2023, a Germany-wide survey on the current clinical practice of three different large field irradiation techniques (LFIT), namely total body irradiation (TBI), total skin irradiation (TSI) and craniospinal irradiation (CSI), was conducted covering different aspects of the irradiation process, e.g., the irradiation unit and technique, dosimetrical aspects and treatment planning as well as quality assurance. The responses provided a deep insight into the applied approaches showing a high heterogeneity between participating centers for all three large field irradiation techniques. The highest heterogeneity was found for TBI. Here, differences between centers were found in almost every aspect of the irradiation process, e.g., the irradiation technique, the prescription dose, the spared organs at risk and the applied treatment planning method. For TBI, the only agreement was found in the fractionation scheme (2 Gy/fraction, 2 fractions/day) and the dose reduction to the lung. TSI was the rarest of the three LFITs. For TSI, the only agreement was found in the use of 6 MeV when irradiating with electrons. The reported approaches of CSI were closest to standard radiotherapy, using no CSI-specific irradiation techniques or treatment planning methods. For CSI, the only agreement was found in the prescribed dose to the brain (50 - 60 Gy). When asking for future requirements, participating centers considered the lack of standardization as the most important future challenge and suggested to perform (retrospective) patient studies. The results of such studies can then serve as a basis for new and improved guidelines.

2.
Phys Med Biol ; 69(19)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39137807

RESUMO

Objective.The energy deposition of photons and protons differs. It depends on the position in the proton Bragg peak (BP) and the linear energy transfer (LET) leading to a variable relative biological effectiveness (RBE). Here, we investigate LET dependent alterations on metabolic viability and proliferation of sarcoma and endothelium cell lines following proton irradiation in comparison to photon exposure.Approach.Using a multi-step range shifter, each column of a 96-well plate was positioned in a different depth along four BP curves with increasing intensities. The high-throughput experimental setup covers dose, LET, and RBE changes seen in a treatment field. Photon irradiation was performed to calculate the RBE along the BP curve. Two biological information out of one experiment were extracted allowing a correlation between metabolic viability and proliferation of the cells.Main results.The metabolic viability and cellular proliferation were column-wise altered showing a depth-dose profile. Endothelium cell viability recovers within 96 h post BP irradiation while sarcoma cell viability remains reduced. Highest RBE values were observed at the BP distal fall-off regarding proliferation of the sarcoma and endothelial cells.Significance.The high-throughput experimental setup introduced here (I) covers dose, LET, and RBE changes seen in a treatment field, (II) measures short-term effects within 48 h to 96 h post irradiation, and (III) can additionally be transferred to various cell types without time consuming experimental adaptations. Traditionally, RBE values are calculated from clonogenic cell survival. Measured RBE profiles strongly depend on physical characteristics such as dose and LET and biological characteristics for example cell type and time point. Metabolic viability and proliferation proofed to be in a similar effect range compared to clonogenic survival results. Based on limited data of combined irradiation with doxorubicin, future experiments will test combined treatment with systemic therapies applied in clinics e.g. cyclin-dependent inhibitors.


Assuntos
Proliferação de Células , Sobrevivência Celular , Transferência Linear de Energia , Sarcoma , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Sarcoma/radioterapia , Humanos , Eficiência Biológica Relativa , Linhagem Celular Tumoral , Fótons , Células Endoteliais/efeitos da radiação , Células Endoteliais/citologia
3.
Med Phys ; 51(1): 622-636, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37877574

RESUMO

BACKGROUND: Applying tolerance doses for organs at risk (OAR) from photon therapy introduces uncertainties in proton therapy when assuming a constant relative biological effectiveness (RBE) of 1.1. PURPOSE: This work introduces the novel dirty and clean dose concept, which allows for creating treatment plans with a more photon-like dose response for OAR and, thus, less uncertainties when applying photon-based tolerance doses. METHODS: The concept divides the 1.1-weighted dose distribution into two parts: the clean and the dirty dose. The clean and dirty dose are deposited by protons with a linear energy transfer (LET) below and above a set LET threshold, respectively. For the former, a photon-like dose response is assumed, while for the latter, the RBE might exceed 1.1. To reduce the dirty dose in OAR, a MaxDirtyDose objective was added in treatment plan optimization. It requires setting two parameters: LET threshold and max dirty dose level. A simple geometry consisting of one target volume and one OAR in water was used to study the reduction in dirty dose in the OAR depending on the choice of the two MaxDirtyDose objective parameters during plan optimization. The best performing parameter combinations were used to create multiple dirty dose optimized (DDopt) treatment plans for two cranial patient cases. For each DDopt plan, 1.1-weighted dose, variable RBE-weighted dose using the Wedenberg RBE model and dose-average LETd distributions as well as resulting normal tissue complication probability (NTCP) values were calculated and compared to the reference plan (RefPlan) without MaxDirtyDose objectives. RESULTS: In the water phantom studies, LET thresholds between 1.5 and 2.5 keV/µm yielded the best plans and were subsequently used. For the patient cases, nearly all DDopt plans led to a reduced Wedenberg dose in critical OAR. This reduction resulted from an LET reduction and translated into an NTCP reduction of up to 19 percentage points compared to the RefPlan. The 1.1-weighted dose in the OARs was slightly increased (patient 1: 0.45 Gy(RBE), patient 2: 0.08 Gy(RBE)), but never exceeded clinical tolerance doses. Additionally, slightly increased 1.1-weighted dose in healthy brain tissue was observed (patient 1: 0.81 Gy(RBE), patient 2: 0.53 Gy(RBE)). The variation of NTCP values due to variation of α/ß from 2 to 3 Gy was much smaller for DDopt (2 percentage points (pp)) than for RefPlans (5 pp). CONCLUSIONS: The novel dirty and clean dose concept allows for creating biologically more robust proton treatment plans with a more photon-like dose response. The reduced uncertainties in RBE can, therefore, mitigate uncertainties introduced by using photon-based tolerance doses for OAR.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Transferência Linear de Energia , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Água , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Front Oncol ; 12: 982417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419890

RESUMO

Background and purpose: Proton therapy has become a popular treatment modality in the field of radiooncology due to higher spatial dose conformity compared to conventional radiotherapy, which holds the potential to spare normal tissue. Nevertheless, unresolved research questions, such as the much debated relative biological effectiveness (RBE) of protons, call for preclinical research, especially regarding in vivo studies. To mimic clinical workflows, high-precision small animal irradiation setups with image-guidance are needed. Material and methods: A preclinical experimental setup for small animal brain irradiation using proton radiographies was established to perform planning, repositioning, and irradiation of mice. The image quality of proton radiographies was optimized regarding the resolution, contrast-to-noise ratio (CNR), and minimal dose deposition in the animal. Subsequently, proof-of-concept histological analysis was conducted by staining for DNA double-strand breaks that were then correlated to the delivered dose. Results: The developed setup and workflow allow precise brain irradiation with a lateral target positioning accuracy of<0.26mm for in vivo experiments at minimal imaging dose of<23mGy per mouse. The custom-made software for image registration enables the fast and precise animal positioning at the beam with low observer-variability. DNA damage staining validated the successful positioning and irradiation of the mouse hippocampus. Conclusion: Proton radiography enables fast and effective high-precision lateral alignment of proton beam and target volume in mouse irradiation experiments with limited dose exposure. In the future, this will enable irradiation of larger animal cohorts as well as fractionated proton irradiation.

5.
Radiat Oncol ; 17(1): 169, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273132

RESUMO

BACKGROUND: To introduce and compare multiple biological effectiveness guided (BG) proton plan optimization strategies minimizing variable relative biological effectiveness (RBE) induced dose burden in organs at risk (OAR) while maintaining plan quality with a constant RBE. METHODS: Dose-optimized (DOSEopt) proton pencil beam scanning reference treatment plans were generated for ten cranial patients with prescription doses ≥ 54 Gy(RBE) and ≥ 1 OAR close to the clinical target volume (CTV). For each patient, four additional BG plans were created. BG objectives minimized either proton track-ends, dose-averaged linear energy transfer (LETd), energy depositions from high-LET protons or variable RBE-weighted dose (DRBE) in adjacent serially structured OARs. Plan quality (RBE = 1.1) was assessed by CTV dose coverage and robustness (2 mm setup, 3.5% density), dose homogeneity and conformity in the planning target volumes and adherence to OAR tolerance doses. LETd, DRBE (Wedenberg model, α/ßCTV = 10 Gy, α/ßOAR = 2 Gy) and resulting normal tissue complication probabilities (NTCPs) for blindness and brainstem necrosis were derived. Differences between DOSEopt and BG optimized plans were assessed and statistically tested (Wilcoxon signed rank, α = 0.05). RESULTS: All plans were clinically acceptable. DOSEopt and BG optimized plans were comparable in target volume coverage, homogeneity and conformity. For recalculated DRBE in all patients, all BG plans significantly reduced near-maximum DRBE to critical OARs with differences up to 8.2 Gy(RBE) (p < 0.05). Direct DRBE optimization primarily reduced absorbed dose in OARs (average ΔDmean = 2.0 Gy; average ΔLETd,mean = 0.1 keV/µm), while the other strategies reduced LETd (average ΔDmean < 0.3 Gy; average ΔLETd,mean = 0.5 keV/µm). LET-optimizing strategies were more robust against range and setup uncertaintes for high-dose CTVs than DRBE optimization. All BG strategies reduced NTCP for brainstem necrosis and blindness on average by 47% with average and maximum reductions of 5.4 and 18.4 percentage points, respectively. CONCLUSIONS: All BG strategies reduced variable RBE-induced NTCPs to OARs. Reducing LETd in high-dose voxels may be favourable due to its adherence to current dose reporting and maintenance of clinical plan quality and the availability of reported LETd and dose levels from clinical toxicity reports after cranial proton therapy. These optimization strategies beyond dose may be a first step towards safely translating variable RBE optimization in the clinics.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Necrose , Cegueira
6.
Radiother Oncol ; 172: 134-139, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605747

RESUMO

BACKGROUND AND PURPOSE: The relative biological effectiveness (RBE) varies along the treatment field. However, in clinical practice, a constant RBE of 1.1 is assumed, which can result in undesirable side effects. This study provides an accurate overview of current clinical practice for considering proton RBE in Europe. MATERIALS AND METHODS: A survey was devised and sent to all proton therapy centres in Europe that treat patients. The online questionnaire consisted of 39 questions addressing various aspects of RBE consideration in clinical practice, including treatment planning, patient follow-up and future demands. RESULTS: All 25 proton therapy centres responded. All centres prescribed a constant RBE of 1.1, but also applied measures (except for one eye treatment centre) to counteract variable RBE effects such as avoiding beams stopping inside or in front of an organ at risk and putting restrictions on the minimum number and opening angle of incident beams for certain treatment sites. For the future, most centres (16) asked for more retrospective or prospective outcome studies investigating the potential effect of the effect of a variable RBE. To perform such studies, 18 centres asked for LET and RBE calculation and visualisation tools developed by treatment planning system vendors. CONCLUSION: All European proton centres are aware of RBE variability but comply with current guidelines of prescribing a constant RBE. However, they actively mitigate uncertainty and risk of side effects resulting from increased RBE by applying measures and restrictions during treatment planning. To change RBE-related clinical guidelines in the future more clinical data on RBE are explicitly demanded.


Assuntos
Terapia com Prótons , Humanos , Transferência Linear de Energia , Estudos Prospectivos , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Eficiência Biológica Relativa , Estudos Retrospectivos , Inquéritos e Questionários
7.
Physiol Meas ; 42(6)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34049294

RESUMO

Objective. We evaluate a tracer kinetic model for quantification of physiological perfusion and microvascular residue time kurtosis (RTK) in skeletal muscle vasculature with first pass bolus experiments in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).Approach. A decreasing stretched Mittag-Leffler function (f1C model) was obtained as the impulse response solution of a rate equation of real-valued ('fractional') derivation order. The method was validated in skeletal muscle in the lower limb of seven female pigs examined by DCE-MRI. Dynamic imaging during blood pool contrast agent elimination was performed using a 3D gradient echo sequence with k-space sharing. Blood flow was augmented by continuous infusion of the vasodilator adenosine into the femoral artery increasing blood flow up to four times. Blood flow measured by a Doppler flow probe placed at the femoral artery served as ground truth.Main results. Goodness of fit and correlation with the Doppler measurements,r= 0.80 (P< 0.001), of the 4-parameter f1C model was comparable with the results obtained with a previously tested 6-parameter two-compartment (2C) model. The derivation orderαof the f1C model can be interpreted as a measure of microvascular RTK. With increasing blood flow,αdropped significantly, leading to an increase in RTK.Significance. The f1C model is a practical approach based on hemodynamic principles to quantify physiological microvascular perfusion but it is impaired due to its compartmental nature.


Assuntos
Cálculos , Meios de Contraste , Animais , Feminino , Cinética , Extremidade Inferior , Imageamento por Ressonância Magnética , Perfusão , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA