Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2021: 6258508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681355

RESUMO

Acrylamide (AA) formation in starch-based processed foods at elevated temperatures is a serious health issue as it is a toxic and carcinogenic substance. However, the formation of more AA entangles with modern-day fast food industries, and a considerable amount of this ingredient is being consumed by fast food eaters inadvertently throughout the world. This article reviews the factors responsible for AA formation pathways, investigation techniques of AA, toxicity, and health-related issues followed by mitigation methods that have been studied in the past few decades comprehensively. Predominantly, AA and hydroxymethylfurfural (HMF) are produced via the Maillard reaction and can be highlighted as the major heat-induced toxins formulated in bread and bakery products. Epidemiological studies have shown that there is a strong relationship between AA accumulation in the body and the increased risk of cancers. The scientific community is still in a dearth of technology in producing AA-free starch-protein-fat-based thermally processed food products. Therefore, this paper may facilitate the food scientists to their endeavor in developing mitigation techniques pertaining to the formation of AA and HMF in baked foods in the future.


Assuntos
Acrilamida/análise , Culinária , Fast Foods/análise , Análise de Alimentos , Furaldeído/análogos & derivados , Amido/química , Furaldeído/análise
2.
J Lipids ; 2020: 8853940, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774923

RESUMO

Lipid oxidation has been identified as a major deterioration process of vegetable oils, which leads to the production of primary and secondary oxidative compounds that are harmful to human health. Oleoresins of ginger, garlic, nutmeg, pepper, cloves, and cinnamon were extracted and incorporated into coconut oil, and change occurrence on physicochemical properties, thermal stability, shelf life, and antioxidant activity was monitored against the same properties of pure coconut oil. Lipid oxidation was assessed in terms of the free fatty acid level and peroxide value. For the comparison purpose, another oil sample was prepared by incorporating vitamin E too. Results revealed that both peroxide value and FFA of pure and flavored coconut oil samples after a one-week storage period were 3.989 ± 0.006 and 3.626 ± 0.002 mEq/kg and 0.646 ± 0.001 and 0.604 ± 0.002 (%), respectively. Saponification value, iodine value, smoke point, and the flashpoint of flavored oil were decreased while increasing the viscosity during storage. The highest phenolic content and DPPH free radical scavenging activity were found in flavored coconut oil. Since spices containing antioxidants, the thermal stability of flavored oil was better than that of pure coconut oil. Both oleoresins and vitamin E-incorporated samples showed the same pattern of increment of FFA and peroxide value during storage; however, those increments were slower than those of pure coconut oil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA