Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(5): 101516, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38626769

RESUMO

Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Diferenciação Celular , Células Dendríticas , Neoplasias Pulmonares , Linfócitos T , Vacinação , Humanos , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Antígenos de Neoplasias/imunologia , Diferenciação Celular/imunologia , Idoso , Linfócitos T/imunologia
2.
Cytotherapy ; 24(2): 213-222, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34696961

RESUMO

Messenger RNA (mRNA) has become a promising tool in therapeutic cancer vaccine strategies. Owing to its flexible design and rapid production, mRNA is an attractive antigen delivery format for cancer vaccines targeting mutated peptides expressed in a tumor-the so-called neoantigens. These neoantigens are rarely shared between patients, and inclusion of these antigens in a vaccine requires the production of individual batches of patient-tailored mRNA. The authors have developed MIDRIXNEO, a personalized mRNA-loaded dendritic cell vaccine targeting tumor neoantigens, which is currently being evaluated in a phase 1 clinical study in lung cancer patients. To facilitate this study, the authors set up a Good Manufacturing Practice (GMP)-compliant production process for the manufacture of small batches of personalized neoantigen-encoding mRNA. In this article, the authors describe the complete mRNA production process and the extensive quality assessment to which the mRNA is subjected. Validation runs have shown that the process delivers mRNA of reproducible, high quality. This process is now successfully applied for the production of neoantigen-encoding mRNA for the clinical evaluation of MIDRIXNEO. To the authors' knowledge, this is the first time that a GMP-based production process of patient-tailored neoantigen mRNA has been described.


Assuntos
Vacinas Anticâncer , Neoplasias Pulmonares , Neoplasias , Antígenos de Neoplasias/genética , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Peptídeos , RNA Mensageiro/genética
3.
Acta Clin Belg ; 76(6): 482-486, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32285755

RESUMO

Objectives: Cytomegalovirus (CMV) infection is one of the most common complications in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients. The classic antiviral treatments have shown clinical efficacy but are often associated with drug resistance. Reconstitution of CMV-specific cellular immunity is essential in controlling CMV infection; therefore, adoptive transfer of CMV-specific T cells is a promising treatment option. We treated a patient with a multidrug resistant CMV infection after haploidentical HSCT with CMV-specific T cells.Methods: The T cells were derived from the HSCT donor who was CMV seropositive. We generated the T cells by a short-term Good Manufacturing Practice (GMP) grade protocol in which a leukapheresis product of the HSCT donor was stimulated with the immunodominant antigen pp65 and interferon-γ secreting cells were isolated. A total of 5 × 105 T cells were administered to the patient within 30 hours after leukapheresis.Results: The patient was closely monitored for reconstitution of antiviral T cell immunity and viral replication after adoptive T cell transfer. We observed an in vivo expansion of both CD4+ and CD8+ CMV-specific T cells associated with a significant decrease in viral burden and clinical improvement.Conclusion: This case report further supports the feasibility and effectiveness of adoptive donor T cell transfer for the treatment of drug resistant CMV infections after allo-HSCT.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Citomegalovirus , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Linfócitos T , Doadores de Tecidos
4.
Oncoimmunology ; 6(1): e1253655, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197369

RESUMO

Targeting immunomodulatory pathways has ushered a new era in lung cancer therapy. Further progress requires deeper insights into the biology of immune cells in the lung cancer micro-environment. Dendritic cells (DCs) represent a heterogeneous and highly plastic immune cell system with a central role in controlling immune responses. The intratumoral infiltration and activation status of DCs are emerging as clinically relevant parameters in lung cancer. In this study, we used an orthotopic preclinical model of lung cancer to dissect how the lung tumor micro-environment affects tissue-resident DCs and extract novel biologically and clinically relevant information. Lung tumor-infiltrating leukocytes expressing generic DC markers were found to predominantly consist of CD11b+ cells that, compare with peritumoral lung DC counterparts, strongly overexpress the T-cell inhibitory molecule PD-L1 and acquire classical surface markers of tumor-associated macrophages (TAMs). Transcriptome analysis of these CD11b+ tumor-infiltrating DCs (TIDCs) indicates impaired antitumoral immunogenicity, confirms the skewing toward TAM-related features, and indicates exposure to a hypoxic environment. In parallel, TIDCs display a specific microRNA (miRNA) signature dominated by the prototypical lung cancer oncomir miR-31. In vitro, hypoxia drives intrinsic miR-31 expression in CD11b+ DCs. Conditioned medium of miR-31 overexpressing CD11b+ DCs induces pro-invasive lung cancer cell shape changes and is enriched with pro-metastatic soluble factors. Finally, analysis of TCGA datasets reveals that the TIDC-associated miRNA signature has a negative prognostic impact in non-small cell lung cancer. Together, these data suggest a novel mechanism through which the lung cancer micro-environment exploits the plasticity of the DC system to support tumoral progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA