Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139122

RESUMO

S-adenosylmethionine (SAM) is considered to be a useful therapeutic agent for degenerative cartilage diseases, although its mechanism is not clear. We previously found that polyamines stimulate the expression of differentiated phenotype of chondrocytes. We also found that the cellular communication network factor 2 (CCN2) played a huge role in the proliferation and differentiation of chondrocytes. Therefore, we hypothesized that polyamines and CCN2 could be involved in the chondroprotective action of SAM. In this study, we initially found that exogenous SAM enhanced proteoglycan production but not cell proliferation in human chondrocyte-like cell line-2/8 (HCS-2/8) cells. Moreover, SAM enhanced gene expression of cartilage-specific matrix (aggrecan and type II collagen), Sry-Box transcription factor 9 (SOX9), CCN2, and chondroitin sulfate biosynthetic enzymes. The blockade of the methionine adenosyltransferase 2A (MAT2A) enzyme catalyzing intracellular SAM biosynthesis restrained the effect of SAM on chondrocytes. The polyamine level in chondrocytes was higher in SAM-treated culture than control culture. Additionally, Alcian blue staining and RT-qPCR indicated that the effects of SAM on the production and gene expression of aggrecan were reduced by the inhibition of polyamine synthesis. These results suggest that the stimulation of polyamine synthesis and gene expression of chondrogenic differentiation factors, such as CCN2, account for the mechanism underlying the action of SAM on chondrocytes.


Assuntos
Cartilagem , S-Adenosilmetionina , Humanos , Agrecanas/genética , Agrecanas/metabolismo , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/metabolismo , Cartilagem/metabolismo , Condrócitos/metabolismo , Diferenciação Celular , Expressão Gênica , Poliaminas/farmacologia , Poliaminas/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Metionina Adenosiltransferase/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1867(3): 166013, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33212187

RESUMO

Non-alcoholic steatohepatitis (NASH) is becoming a growing public health problem along with the increase of metabolic syndrome worldwide. Extracellular nucleotides are known to serve as a danger signal by initiating purinergic signaling in many inflammatory disorders, although the role of purinergic signaling in the progression of NASH remains to be clarified. Vesicular nucleotide transporter (VNUT) is a key molecule responsible for vesicular ATP release to initiate purinergic signaling. Here, we studied the role of VNUT in the progression of nonalcoholic steatohepatitis. VNUT was expressed in mouse hepatocytes and associated, at least in part, with apolipoprotein B (apoB)-containing vesicles. High glucose stimulation evoked release of appreciable amount of ATP from hepatocytes, which disappeared in hepatocytes of Vnut knockout (Vnut-/-) mice. Glucose treatment also stimulated triglyceride secretion from hepatocytes, which was inhibited by PPADS and MRS211, antagonists of P2Y receptors, and clodronate, a VNUT inhibitor, and was significantly reduced in Vnut-/- mice. In vivo, postprandial secretion of triglyceride from hepatocytes was observed, while the serum triglyceride level was significantly reduced in Vnut-/- mice. On a high-fat diet, the liver of wild type mice exhibited severe inflammation, fibrosis, and macrophage infiltration, which is similar to NASH in humans, while this NASH pathology was not observed in Vnut-/- mice. These results suggest that VNUT-mediated vesicular ATP release regulates triglyceride secretion and involves in chronic inflammation in hepatocytes. Since blockade of vesicular ATP release protects against progression of steatohepatitis, VNUT may be a pharmacological target for NASH.


Assuntos
Trifosfato de Adenosina/metabolismo , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Progressão da Doença , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia
3.
EBioMedicine ; 32: 72-83, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29887330

RESUMO

Although psychotropic drugs act on neurons and glial cells, how glia respond, and whether glial responses are involved in therapeutic effects are poorly understood. Here, we show that fluoxetine (FLX), an anti-depressant, mediates its anti-depressive effect by increasing the gliotransmission of ATP. FLX increased ATP exocytosis via vesicular nucleotide transporter (VNUT). FLX-induced anti-depressive behavior was decreased in astrocyte-selective VNUT-knockout mice or when VNUT was deleted in mice, but it was increased when astrocyte-selective VNUT was overexpressed in mice. This suggests that VNUT-dependent astrocytic ATP exocytosis has a critical role in the therapeutic effect of FLX. Released ATP and its metabolite adenosine act on P2Y11 and adenosine A2b receptors expressed by astrocytes, causing an increase in brain-derived neurotrophic factor in astrocytes. These findings suggest that in addition to neurons, FLX acts on astrocytes and mediates its therapeutic effects by increasing ATP gliotransmission.


Assuntos
Depressão/tratamento farmacológico , Fluoxetina/administração & dosagem , Proteínas de Transporte de Nucleotídeos/genética , Receptor A2B de Adenosina/genética , Receptores Purinérgicos P2/genética , Trifosfato de Adenosina/metabolismo , Animais , Antidepressivos/administração & dosagem , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Depressão/genética , Depressão/metabolismo , Depressão/patologia , Exocitose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Knockout , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
4.
J Biol Chem ; 293(10): 3770-3779, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29363573

RESUMO

Neutrophils migrate to sites infected by pathogenic microorganisms. This migration is regulated by neutrophil-secreted ATP, which stimulates neutrophils in an autocrine manner through purinergic receptors on the plasma membrane. Although previous studies have shown that ATP is released through channels at the plasma membrane of the neutrophil, it remains unknown whether it is also released through alternate secretory systems involving vesicular mechanisms. In this study, we investigated the possible involvement of vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and nucleotide release, in ATP secretion from neutrophils. RT-PCR and Western blotting analysis indicated that VNUT is expressed in mouse neutrophils. Immunohistochemical analysis indicated that VNUT mainly colocalized with matrix metalloproteinase-9 (MMP-9), a marker of tertiary granules, which are secretory organelles. In mouse neutrophils, ATP release was inhibited by clodronate, which is a potent VNUT inhibitor. Furthermore, neutrophils from VNUT-/- mice did not release ATP and exhibited significantly reduced migration in vitro and in vivo These findings suggest that tertiary granule-localized VNUT is responsible for vesicular ATP release and subsequent neutrophil migration. Thus, these findings suggest an additional mechanism through which ATP is released by neutrophils.


Assuntos
Trifosfato de Adenosina/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Vesículas Secretórias/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Movimento Celular/efeitos dos fármacos , Adjuvante de Freund/farmacologia , Regulação da Expressão Gênica , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação de Neutrófilo/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Proteínas de Transporte de Nucleotídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleotídeos/genética , Transporte Proteico/efeitos dos fármacos , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/imunologia
5.
Purinergic Signal ; 13(3): 387-404, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28616712

RESUMO

Vesicular storage of ATP is one of the processes initiating purinergic chemical transmission. Although an active transport mechanism was postulated to be involved in the processes, a transporter(s) responsible for the vesicular storage of ATP remained unidentified for some time. In 2008, SLC17A9, the last identified member of the solute carrier 17 type I inorganic phosphate transporter family, was found to encode the vesicular nucleotide transporter (VNUT) that is responsible for the vesicular storage of ATP. VNUT transports various nucleotides in a membrane potential-dependent fashion and is expressed in the various ATP-secreting cells. Mice with knockout of the VNUT gene lose vesicular storage and release of ATP from neurons and neuroendocrine cells, resulting in blockage of the initiation of purinergic chemical transmission. Thus, VNUT plays an essential role in the vesicular storage and release of ATP. The VNUT knockout mice exhibit resistance for neuropathic pain and a therapeutic effect against diabetes by way of increased insulin sensitivity. Thus, VNUT inhibitors and suppression of VNUT gene expression may be used for therapeutic purposes through suppression of purinergic chemical transmission. This review summarizes the studies to date on VNUT and discusses what we have learned about the relevance of vesicular ATP release as a potential drug target.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Nucleotídeos/metabolismo , Receptores Purinérgicos/metabolismo , Animais , Humanos , Vesículas Secretórias/metabolismo , Transdução de Sinais/fisiologia
6.
Biochim Biophys Acta Biomembr ; 1859(5): 931-940, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28188742

RESUMO

Vesicular glutamate transporter (VGLUT) is an active transporter responsible for vesicular storage of glutamate in synaptic vesicles and plays an essential role in glutamatergic neurotransmission. VGLUT consists of three isoforms, VGLUT1, VGLUT2, and VGLUT3. The VGLUT1 variant, VGLUT1v, with an additional 75-base pair sequence derived from a second intron between exons 2 and 3, which corresponds to 25 amino acid residues in the 1st loop of VGLUT1, is the only splicing variant among VGLUTs, although whether VGLUT1v protein is actually translated at the protein level remains unknown. In the present study, VGLUT1v was expressed in insect cells, solubilized, purified to near homogeneity, and its transport activity was examined. Proteoliposomes containing purified VGLUT1v were shown to accumulate glutamate upon imposition of an inside-positive membrane potential (Δψ). The Δψ-driven glutamate uptake activity requires Cl- and its pharmacological profile and kinetics are comparable to those of other VGLUTs. The retinal membrane contained two VGLUT1 moieties with apparent molecular masses of 65 and 57kDa. VGLUT1v-specific antibodies against an inserted 25-amino acid residue sequence identified a 65-kDa immunoreactive polypeptide. Immunohistochemical analysis indicated that VGLUT1v immunoreactivity is present in photoreceptor cells and is associated with synaptic vesicles. VGLUT1v immunoreactivity is also present in pinealocytes, but not in other areas, including the brain. These results indicated that VGLUT1v exists in a functional state in rat photosensitive cells and is involved in glutamatergic chemical transmission.


Assuntos
Proteína Vesicular 1 de Transporte de Glutamato/fisiologia , Animais , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Potenciais da Membrana , Células Fotorreceptoras/química , Glândula Pineal/química , Splicing de RNA , Ratos , Vesículas Sinápticas/química , Proteína Vesicular 1 de Transporte de Glutamato/análise
7.
Sci Rep ; 6: 29761, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27412485

RESUMO

The bladder urothelium is more than just a barrier. When the bladder is distended, the urothelium functions as a sensor to initiate the voiding reflex, during which it releases ATP via multiple mechanisms. However, the mechanisms underlying this ATP release in response to the various stretch stimuli caused by bladder filling remain largely unknown. Therefore, the aim of this study was to elucidate these mechanisms. By comparing vesicular nucleotide transporter (VNUT)-deficient and wild-type male mice, we showed that ATP has a crucial role in urine storage through exocytosis via a VNUT-dependent mechanism. VNUT was abundantly expressed in the bladder urothelium, and when the urothelium was weakly stimulated (i.e. in the early filling stages), it released ATP by exocytosis. VNUT-deficient mice showed reduced bladder compliance from the early storage phase and displayed frequent urination in inappropriate places without a change in voiding function. We conclude that urothelial, VNUT-dependent ATP exocytosis is involved in urine storage mechanisms that promote the relaxation of the bladder during the early stages of filling.


Assuntos
Trifosfato de Adenosina/metabolismo , Exocitose , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Animais , Células Cultivadas , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Bexiga Urinária/citologia , Bexiga Urinária/ultraestrutura , Sistema Urinário/metabolismo , Micção , Urotélio/citologia , Urotélio/ultraestrutura
8.
Biol Pharm Bull ; 39(4): 564-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27040629

RESUMO

Vesicular nucleotide transporter (VNUT) is a membrane protein that is responsible for vesicular storage and subsequent vesicular release of nucleotides, such as ATP, and plays an essential role in purinergic chemical transmission. In the present study, we investigated whether VNUT is present in the rodent retina to define the site(s) of vesicular ATP release. In the mouse retina, reverse transcription polymerase chain reaction (RT-PCR) and immunological analyses using specific anti-VNUT antibodies indicated that VNUT is expressed as a polypeptide with an apparent molecular mass of 59 kDa. VNUT is widely distributed throughout the inner and outer retinal layers, particularly in the outer segment of photoreceptors, outer plexiform layer, inner plexiform layer, and ganglion cell layer. VNUT is colocalized with vesicular glutamate transporter 1 and synaptophysin in photoreceptor cells, while it is colocalized with vesicular γ-aminobutyric acid (GABA) transporter in amacrine cells and bipolar cells. VNUT is also present in astrocytes and Müller cells. The retina from VNUT knockout (VNUT(-/-)) mice showed the loss of VNUT immunoreactivity. The retinal membrane fraction took up radiolabeled ATP in diisothiocyanate stilbene disulfonic acid (DIDS)-, an inhibitor of VNUT, and bafilomycin A1-, a vacuolar adenosine triphosphatase (ATPase) inhibitor, in a sensitive manner, while membranes from VNUT(-/-) mice showed the loss of DIDS-sensitive ATP uptake. Taken together, these results indicate that functional VNUT is expressed in the rodent retina and suggest that ATP is released from photoreceptor cells, bipolar cells, amacrine cells, and astrocytes as well as Müller cells to initiate purinergic chemical transmission.


Assuntos
Retina/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/genética
9.
Sci Rep ; 4: 6689, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25331291

RESUMO

Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut(-/-)) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut(-/-) mice. Glucose-responsive ATP release was also absent in pancreatic ß-cells in Vnut(-/-) mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut(-/-) mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Nucleotídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Glicemia/genética , Catecolaminas/metabolismo , Humanos , Insulina/genética , Resistência à Insulina/genética , Secreção de Insulina , Camundongos , Camundongos Knockout , Proteínas de Transporte de Nucleotídeos/metabolismo , Vesículas Secretórias/metabolismo
10.
Biol Pharm Bull ; 37(7): 1090-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24989000

RESUMO

It is well established that vesicular nucleotide transporter (VNUT) is responsible for vesicular storage of nucleotides such as ATP, and that VNUT-expressing cells can secrete nucleotides upon exocytosis, playing an important role in purinergic chemical transmission. In the present study, we show that VNUT is expressed in intestinal L cells. Immunohistochemical evidence indicated that VNUT is present in glucagon-like peptide 1 (GLP-1) containing cells in rat intestine. VNUT immunoreactivity is not co-localized with GLP-1, a marker for secretory granules, and synaptophysin, a marker for synaptic-like microvesicles (SLMVs). Essentially the same results were obtained for GLUTag clonal L cells. Sucrose density gradient analysis confirmed that VNUT is present the light fraction, unlike secretory granules. These results demonstrate that intestinal L cells express VNUT in either the unidentified organelles at light density other than secretory granules and SLMVs or a subpopulation of SLMVs, and suggest that L cells are purinergic in nature and secrete nucleotides independent of GLP-1 secretion.


Assuntos
Células Enteroendócrinas/metabolismo , Intestino Delgado/metabolismo , Proteínas de Transporte de Nucleotídeos , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Técnicas de Cultura de Células , Técnica Indireta de Fluorescência para Anticorpo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Intestino Delgado/citologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Proteínas de Transporte de Nucleotídeos/biossíntese , Proteínas de Transporte de Nucleotídeos/isolamento & purificação , Ratos Wistar , Receptores Purinérgicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vesículas Sinápticas/metabolismo , Sinaptofisina/biossíntese , Sinaptofisina/isolamento & purificação , Proteínas Vesiculares de Transporte de Glutamato/biossíntese , Proteínas Vesiculares de Transporte de Glutamato/isolamento & purificação
11.
Curr Pharm Des ; 20(16): 2745-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23886392

RESUMO

Neurons and neuroendocrine cells store nucleotides in vesicles and release them upon stimulation, leading to intercellular purinergic signaling. The molecular machinery responsible for the vesicular storage of nucleotides was a long standing enigma, however, recently the transporter involving in the process was identified. This article summarizes the history of vesicular storage of nucleotides and the identification of the vesicular nucleotide transporter (VNUT) responsible for the process. The significance of VNUT as a drug target to control purinergic chemical transmission is also discussed.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Proteínas de Transporte de Nucleotídeos/metabolismo , Nucleotídeos/metabolismo , Vesículas Secretórias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico/fisiologia , Sistemas de Liberação de Medicamentos/tendências , Descoberta de Drogas/tendências , Humanos
12.
Am J Physiol Cell Physiol ; 304(10): C976-84, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23467297

RESUMO

Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca(2+)-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins.


Assuntos
Células Caliciformes/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Nucleotídeos/metabolismo , Sistema Respiratório/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Difosfato de Adenosina/biossíntese , Monofosfato de Adenosina/biossíntese , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Humanos , Mucinas/genética , Proteínas de Transporte de Nucleotídeos/biossíntese , RNA Interferente Pequeno , Vesículas Secretórias/metabolismo , Uridina Trifosfato/biossíntese
13.
Cereb Cortex ; 22(5): 1203-14, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21810784

RESUMO

ATP is known to be coreleased with glutamate at certain central synapses. However, the nature of its release is controversial. Here, we demonstrate that ATP release from cultured rat hippocampal neurons is sensitive to RNAi-mediated knockdown of the recently identified vesicular nucleotide transporter (VNUT or SLC17A9). In the intact brain, light microscopy showed particularly strong VNUT immunoreactivity in the cerebellar cortex, the olfactory bulb, and the hippocampus. Using immunoelectron microscopy, we found VNUT immunoreactivity colocalized with synaptic vesicles in excitatory and inhibitory terminals in the hippocampal formation. Moreover, VNUT immunolabeling, unlike that of the vesicular glutamate transporter VGLUT1, was enriched in preterminal axons and present in postsynaptic dendritic spines. Immunoisolation of synaptic vesicles indicated presence of VNUT in a subset of VGLUT1-containing vesicles. Thus, we conclude that VNUT mediates transport of ATP into synaptic vesicles of hippocampal neurons, thereby conferring a purinergic phenotype to these cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Neurônios/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Western Blotting , Células Cultivadas , Imunofluorescência , Hipocampo/metabolismo , Técnicas Imunoenzimáticas , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Neurônios/ultraestrutura , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Proteínas de Transporte Vesicular/isolamento & purificação
14.
J Biol Chem ; 285(34): 26107-13, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20566650

RESUMO

SLC17A1 protein (NPT1) is the first identified member of the SLC17 phosphate transporter family and mediates the transmembrane cotransport of Na(+)/P(i) in oocytes. Although this protein is believed to be a renal polyspecific anion exporter, its transport properties are not well characterized. Here, we show that proteoliposomes containing purified SLC17A1 transport various organic anions such as p-aminohippuric acid and acetylsalicylic acid (aspirin) in an inside positive membrane potential (Deltapsi)-dependent manner. We found that NPT1 also transported urate. The uptake characteristics were similar to that of SLC17 members in its Cl(-) dependence and inhibitor sensitivity. When arginine 138, an essential amino acid residue for members of the SLC17 family such as the vesicular glutamate transporter, was specifically mutated to alanine, the resulting mutant protein was inactive in Deltapsi-dependent anion transport. Heterologously expressed and purified human NPT1 carrying the single nucleotide polymorphism mutation that is associated with increased risk of gout in humans exhibited 32% lower urate transport activity compared with the wild type protein. These results strongly suggested that NPT1 is a Cl(-)-dependent polyspecific anion exporter involved in urate excretion under physiological conditions.


Assuntos
Transportadores de Ânions Orgânicos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/fisiologia , Ácido Úrico/metabolismo , Substituição de Aminoácidos , Animais , Transporte Biológico , Cloretos , Eletrofisiologia , Gota/genética , Humanos , Lipossomos , Potenciais da Membrana , Camundongos , Modelos Biológicos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/metabolismo
15.
Biochem Biophys Res Commun ; 388(1): 1-5, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19619506

RESUMO

Taste cells are chemosensory epithelial cells that sense distinct taste qualities. It is the type II taste cell that express G-protein coupled receptors to sense either umami, sweet, or bitter compounds. Whereas several reports have suggested involvement of ATP in taste signal transduction, there is a paucity of molecular information about how ATP is stored and being released. The recent discovery of a novel vesicular nucleotide transporter (VNUT) led us to examine whether VNUT exist in the taste tissue where ATP is to be released for taste signal transmission. Here, we report that VNUT is selectively expressed in type II cell but not in type III taste cell. In addition, we show that during taste bud development VNUT expression is always accompanied by the expression of type II taste cell markers. Our results, together with previous studies, strongly suggest that VNUT plays a role in type II taste cell.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Nucleotídeos/biossíntese , Papilas Gustativas/metabolismo , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte de Nucleotídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Papilas Gustativas/citologia
16.
Proc Natl Acad Sci U S A ; 105(33): 11720-4, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18695252

RESUMO

Aspartate is an excitatory amino acid that is costored with glutamate in synaptic vesicles of hippocampal neurons and synaptic-like microvesicles (SLMVs) of pinealocytes and is exocytosed and stimulates neighboring cells by binding to specific cell receptors. Although evidence increasingly supports the occurrence of aspartergic neurotransmission, this process is still debated because the mechanism for the vesicular storage of aspartate is unknown. Here, we show that sialin, a lysosomal H(+)/sialic acid cotransporter, is present in hippocampal synaptic vesicles and pineal SLMVs. RNA interference of sialin expression decreased exocytosis of aspartate and glutamate in pinealocytes. Proteoliposomes containing purified sialin actively accumulated aspartate and glutamate to a similar extent when inside positive membrane potential is imposed as the driving force. Sialin carrying a mutation found in people suffering from Salla disease (R39C) was completely devoid of aspartate and glutamate transport activity, although it retained appreciable H(+)/sialic acid cotransport activity. These results strongly suggest that sialin possesses dual physiological functions and acts as a vesicular aspartate/glutamate transporter. It is possible that people with Salla disease lose aspartergic (and also the associated glutamatergic) neurotransmission, and this could provide an explanation for why Salla disease causes severe neurological defects.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Ácido Aspártico/metabolismo , Neurônios/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Simportadores/metabolismo , Trifosfato de Adenosina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Transporte Biológico , Células Cultivadas , Exocitose , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Transportadores de Ânions Orgânicos/genética , Filogenia , Ratos , Ratos Wistar , Simportadores/genética
17.
Am J Physiol Cell Physiol ; 293(5): C1437-44, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17715386

RESUMO

Mammalian multidrug and toxic compound extrusion (MATE) proteins are classified into three subfamilies: classes I, II, and III. We previously showed that two of these families act as polyspecific H(+)-coupled transporters of organic cations (OCs) at final excretion steps in liver and kidney (Otsuka et al. Proc Natl Acad Sci USA 102: 17923-17928, 2005; Omote et al. Trends Pharmacol Sci 27: 587-593, 2006). Rodent MATE2 proteins are class III MATE transporters, the molecular nature, as well as transport properties, of which remain to be characterized. In the present study, we investigated the transport properties and localization of mouse MATE2 (mMATE2). On expression in human embryonic kidney (HEK)-293 cells, mMATE2 localized to the intracellular organelles and plasma membrane. mMATE2 mediated pH-dependent TEA transport with substrate specificity similar to, but distinct from, that of mMATE1, which prefers N-methylnicotinamide and guanidine as substrates. mMATE2 expressed in insect cells was solubilized and reconstituted with bacterial H(+)-ATPase into liposomes. The resultant proteoliposomes exhibited ATP-dependent uptake of TEA that was sensitive to carbonyl cyanide 3-chlorophenylhydrazone but unaffected by valinomycin in the presence of K(+). Immunologic techniques using specific antibodies revealed that mMATE2 was specifically expressed in testicular Leydig cells. Thus mMATE2 appears to act as a polyspecific H(+)/OC exporter in Leydig cells. It is concluded that all classes of mammalian MATE proteins act as polyspecific and electroneutral transporters of organic cations.


Assuntos
Antiporters/metabolismo , Células Intersticiais do Testículo/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Antiporters/química , Antiporters/genética , ATPases Bacterianas Próton-Translocadoras/antagonistas & inibidores , ATPases Bacterianas Próton-Translocadoras/metabolismo , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Guanidina/metabolismo , Humanos , Hidrazonas/farmacologia , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Dados de Sequência Molecular , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Proteínas de Transporte de Cátions Orgânicos/química , Proteínas de Transporte de Cátions Orgânicos/genética , Proteolipídeos/metabolismo , Proteínas Recombinantes/metabolismo , Tetraetilamônio/metabolismo , Fatores de Tempo , Transfecção
18.
Biol Pharm Bull ; 29(6): 1251-3, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16755027

RESUMO

D-aspartate is a putative modulator of neuroendocrine functions, and is present in various neuroendocrine cells as well as the central nervous system. Here we show that the islet of Langerhans is a D-aspartate-containing endocrine organ. Immunohistochemical analysis with specific antibodies against D-aspartate indicated that D-aspartate is present in all islet cells, and predominantly present in alpha cells and a subpopulation of F-cells. Since these cells are glutamatergic in nature, it is possible that D-aspartate is involved in the glutamate signaling pathways in the islets.


Assuntos
Ácido D-Aspártico/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Anticorpos Monoclonais , Células Cultivadas , Ácido D-Aspártico/imunologia , Células Secretoras de Glucagon/metabolismo , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Masculino , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA