Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(22): e2122769119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617431

RESUMO

Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic Henipaviruses (HNVs) responsible for recurrent outbreaks in humans and domestic species of highly fatal (50 to 95%) disease. A HeV variant (HeV-g2) of unprecedented genetic divergence has been identified in two fatally diseased horses, and in two flying fox species in regions of Australia not previously considered at risk for HeV spillover. Given the HeV-g2 divergence from HeV while retaining equivalent pathogenicity and spillover potential, understanding receptor usage and antigenic properties is urgently required to guide One Health biosecurity. Here, we show that the HeV-g2 G glycoprotein shares a conserved receptor tropism with prototypic HeV and that a panel of monoclonal antibodies recognizing the G and F glycoproteins potently neutralizes HeV-g2­ and HeV G/F­mediated entry into cells. We determined a crystal structure of the Fab fragment of the hAH1.3 antibody bound to the HeV G head domain, revealing an antigenic site associated with potent cross-neutralization of both HeV-g2 and HeV. Structure-guided formulation of a tetravalent monoclonal antibody (mAb) mixture, targeting four distinct G head antigenic sites, results in potent neutralization of HeV and HeV-g2 and delineates a path forward for implementing multivalent mAb combinations for postexposure treatment of HNV infections.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus Hendra , Fragmentos Fab das Imunoglobulinas , Proteínas do Envelope Viral , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Cristalografia por Raios X , Epitopos/química , Epitopos/genética , Vírus Hendra/genética , Vírus Hendra/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Testes de Neutralização , Profilaxia Pós-Exposição , Domínios Proteicos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
2.
Lancet HIV ; 8(9): e531-e543, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339628

RESUMO

BACKGROUND: Robust age-specific estimates of anal human papillomavirus (HPV) and high-grade squamous intraepithelial lesions (HSIL) in men can inform anal cancer prevention efforts. We aimed to evaluate the age-specific prevalence of anal HPV, HSIL, and their combination, in men, stratified by HIV status and sexuality. METHODS: We did a systematic review for studies on anal HPV infection in men and a pooled analysis of individual-level data from eligible studies across four groups: HIV-positive men who have sex with men (MSM), HIV-negative MSM, HIV-positive men who have sex with women (MSW), and HIV-negative MSW. Studies were required to inform on type-specific HPV infection (at least HPV16), detected by use of a PCR-based test from anal swabs, HIV status, sexuality (MSM, including those who have sex with men only or also with women, or MSW), and age. Authors of eligible studies with a sample size of 200 participants or more were invited to share deidentified individual-level data on the above four variables. Authors of studies including 40 or more HIV-positive MSW or 40 or more men from Africa (irrespective of HIV status and sexuality) were also invited to share these data. Pooled estimates of anal high-risk HPV (HR-HPV, including HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68), and HSIL or worse (HSIL+), were compared by use of adjusted prevalence ratios (aPRs) from generalised linear models. FINDINGS: The systematic review identified 93 eligible studies, of which 64 contributed data on 29 900 men to the pooled analysis. Among HIV-negative MSW anal HPV16 prevalence was 1·8% (91 of 5190) and HR-HPV prevalence was 6·9% (345 of 5003); among HIV-positive MSW the prevalences were 8·7% (59 of 682) and 26·9% (179 of 666); among HIV-negative MSM they were 13·7% (1455 of 10 617) and 41·2% (3798 of 9215), and among HIV-positive MSM 28·5% (3819 of 13 411) and 74·3% (8765 of 11 803). In HIV-positive MSM, HPV16 prevalence was 5·6% (two of 36) among those age 15-18 years and 28·8% (141 of 490) among those age 23-24 years (ptrend=0·0091); prevalence was 31·7% (1057 of 3337) among those age 25-34 years and 22·8% (451 of 1979) among those age 55 and older (ptrend<0·0001). HPV16 prevalence in HIV-negative MSM was 6·7% (15 of 223) among those age 15-18 and 13·9% (166 of 1192) among those age 23-24 years (ptrend=0·0076); the prevalence plateaued thereafter (ptrend=0·72). Similar age-specific patterns were observed for HR-HPV. No significant differences for HPV16 or HR-HPV were found by age for either HIV-positive or HIV-negative MSW. HSIL+ detection ranged from 7·5% (12 of 160) to 54·5% (61 of 112) in HIV-positive MSM; after adjustment for heterogeneity, HIV was a significant predictor of HSIL+ (aPR 1·54, 95% CI 1·36-1·73), HPV16-positive HSIL+ (1·66, 1·36-2·03), and HSIL+ in HPV16-positive MSM (1·19, 1·04-1·37). Among HPV16-positive MSM, HSIL+ prevalence increased with age. INTERPRETATION: High anal HPV prevalence among young HIV-positive and HIV-negative MSM highlights the benefits of gender-neutral HPV vaccination before sexual activity over catch-up vaccination. HIV-positive MSM are a priority for anal cancer screening research and initiatives targeting HPV16-positive HSIL+. FUNDING: International Agency for Research on Cancer.


Assuntos
Canal Anal/virologia , Infecções por Papillomavirus/epidemiologia , Lesões Intraepiteliais Escamosas/epidemiologia , Fatores Etários , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Humanos , Masculino , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia , Prevalência , Fatores de Risco , Sexualidade/estatística & dados numéricos , Lesões Intraepiteliais Escamosas/virologia
3.
PLoS Pathog ; 5(10): e1000642, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19888339

RESUMO

Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID(50) within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Infecções por Henipavirus/prevenção & controle , Vírus Nipah/patogenicidade , Doença Aguda , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Modelos Animais de Doenças , Furões , Glicoproteínas/imunologia , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/patologia , Humanos , Imuno-Histoquímica , Vírus Nipah/imunologia , RNA Viral/metabolismo , Distribuição Tecidual , Proteínas do Envelope Viral/imunologia , Carga Viral
4.
J Virol ; 82(22): 11398-409, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18799571

RESUMO

Hendra virus (HeV) is a member of the broadly tropic and highly pathogenic paramyxovirus genus Henipavirus. HeV is enveloped and infects cells by using membrane-anchored attachment (G) and fusion (F) glycoproteins. G possesses an N-terminal cytoplasmic tail, an external membrane-proximal stalk domain, and a C-terminal globular head that binds the recently identified receptors ephrinB2 and ephrinB3. Receptor binding is presumed to induce conformational changes in G that subsequently trigger F-mediated fusion. The stalk domains of other attachment glycoproteins appear important for oligomerization and F interaction and specificity. However, this region of G has not been functionally characterized. Here we performed a mutagenesis analysis of the HeV G stalk, targeting a series of isoleucine residues within a hydrophobic alpha-helical domain that is well conserved across several attachment glycoproteins. Nine of 12 individual HeV G alanine substitution mutants possessed a complete defect in fusion-promotion activity yet were cell surface expressed and recognized by a panel of conformation-dependent monoclonal antibodies (MAbs) and maintained their oligomeric structure. Interestingly, these G mutations also resulted in the appearance of an additional electrophoretic species corresponding to a slightly altered glycosylated form. Analysis revealed that these G mutants appeared to adopt a receptor-bound conformation in the absence of receptor, as measured with a panel of MAbs that preferentially recognize G in a receptor-bound state. Further, this phenotype also correlated with an inability to associate with F and in triggering fusion even after receptor engagement. Together, these data suggest the stalk domain of G plays an important role in the conformational stability and receptor binding-triggered changes leading to productive fusion, such as the dissociation of G and F.


Assuntos
Efrina-B2/metabolismo , Efrina-B3/metabolismo , Vírus Hendra/fisiologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Fusão Celular , Linhagem Celular , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Proteínas do Envelope Viral/genética
5.
J Virol ; 81(11): 5893-901, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17376907

RESUMO

Hendra virus (HeV) is an emerging paramyxovirus capable of infecting and causing disease in a variety of mammalian species, including humans. The virus infects its host cells through the coordinated functions of its fusion (F) and attachment (G) glycoproteins, the latter of which is responsible for binding the virus receptors ephrinB2 and ephrinB3. In order to identify the receptor binding site, a panel of G glycoprotein constructs containing mutations was generated using an alanine-scanning mutagenesis strategy. Based on a predicted G structure, charged amino acids residing in regions that could be homologous to those in the measles virus H attachment glycoprotein known to be involved in its protein receptor interaction were targeted. Using a coprecipitation-based assay, seven single-amino-acid substitutions in HeV G were identified as having significantly impaired binding to both the ephrinB2 and ephrinB3 viral receptors: D257A, D260A, G439A, K443A, G449A, K465A, and D468A. The impairment of receptor interaction conferred a concomitant diminution in their abilities to promote membrane fusion when coexpressed with F. The G glycoprotein mutants were also recognized by three or more conformation-dependent monoclonal antibodies of a panel of five, were expressed on the cell surface, and retained their abilities to bind and coprecipitate F. Interestingly, some of these mutant G glycoproteins coprecipitated with F more efficiently than wild-type G. Taken together, these data provide strong biochemical and functional evidence that some of these residues could be part of a conformation-dependent, discontinuous, and overlapping ephrinB2 and -B3 binding domain within the HeV G glycoprotein.


Assuntos
Aminoácidos/metabolismo , Vírus Hendra/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Substituição de Aminoácidos/genética , Aminoácidos/genética , Sítios de Ligação/genética , Linhagem Celular , Efrina-B2/metabolismo , Efrina-B3/metabolismo , Células HeLa , Vírus Hendra/química , Vírus Hendra/genética , Humanos , Valor Preditivo dos Testes , Ligação Proteica , Conformação Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
6.
J Virol Methods ; 142(1-2): 29-40, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17292974

RESUMO

Hendra virus (HeV) and Nipah virus (NiV) are related emerging paramyxoviruses classified in the genus Henipavirus. Both cause fatal disease in animals and humans and are classified as biosafety level 4 pathogens. Here we detail two new multiplexed microsphere assays, one for antibody detection and differentiation and another designed as a surrogate for virus neutralization. Both assays utilize recombinant soluble attachment glycoproteins (sG) whereas the latter incorporates the cellular receptor, recombinant ephrin-B2. Spectrally distinct sG(HeV)- and sG(NiV)-coupled microspheres preferentially bound antibodies from HeV- and NiV-seropositive animals, demonstrating a simple procedure to differentiate antibodies to these closely related viruses. Soluble ephrin-B2 bound sG-coupled microspheres in a dose-dependent fashion. Specificity of binding was further evaluated with henipavirus G-specific sera and MAbs. Sera from henipavirus-seropositive animals differentially blocked ephrin-B2 binding, suggesting that detection and differentiation of HeV and NiV neutralizing antibodies can be done simultaneously in the absence of live virus.


Assuntos
Anticorpos Antivirais/sangue , Vírus Hendra/imunologia , Testes de Neutralização , Vírus Nipah/imunologia , Análise Serial de Proteínas , Kit de Reagentes para Diagnóstico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Gatos , Efrina-B2/genética , Efrina-B2/imunologia , Efrina-B2/metabolismo , Vírus Hendra/genética , Vírus Hendra/metabolismo , Henipavirus/genética , Henipavirus/imunologia , Henipavirus/metabolismo , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/virologia , Humanos , Camundongos , Microesferas , Vírus Nipah/genética , Vírus Nipah/metabolismo , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Testes Sorológicos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA