Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Fungal Biol ; 3: 984377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746235

RESUMO

Baseline ploidy significantly impacts evolutionary trajectories and, specifically, tetraploidy is associated with higher rates of adaptation relative to haploidy and diploidy. While the majority of experimental evolution studies investigating ploidy use the budding yeast Saccharomyces cerivisiae, the fungal pathogen Candida albicans is a powerful system to investigate ploidy dynamics, particularly in the context of acquiring antifungal drug resistance. C. albicans laboratory and clinical strains are predominantly diploid, but have been isolated as haploid and polyploid. Here, we evolved diploid and tetraploid C. albicans for ~60 days in the antifungal drug caspofungin. Tetraploid-evolved lines adapted faster than diploid-evolved lines and reached higher levels of caspofungin resistance. While diploid-evolved lines generally maintained their initial genome size, tetraploid-evolved lines rapidly underwent genome-size reductions and did so prior to caspofungin adaptation. While clinical resistance was largely due to mutations in FKS1, these mutations were caused by substitutions in diploid, and indels in tetraploid isolates. Furthermore, fitness costs in the absence of drug selection were significantly less in tetraploid-evolved lines compared to the diploid-evolved lines. Taken together, this work supports a model of adaptation in which the tetraploid state is transient but its ability to rapidly transition ploidy states improves adaptive outcomes and may drive drug resistance in fungal pathogens.

2.
J Vis Exp ; (171)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34057445

RESUMO

While pathogens can be deadly to humans, many of them cause a range of infection types with non-lethal phenotypes. Candida albicans, an opportunistic fungal pathogen of humans, is the fourth most common cause of nosocomial infections which results in ~40% mortality. However, other C. albicans infections are less severe and rarely lethal and include vulvovaginal candidiasis, impacting ~75% of women, as well as oropharyngeal candidiasis, predominantly impacting infants, AIDS patients and cancer patients. While murine models are most frequently used to study C. albicans pathogenesis, these models predominantly assess host survival and are costly, time consuming, and limited in replication. Therefore, several mini-model systems, including Drosophila melanogaster, Danio rerio, Galleria mellonella, and Caenorhabditis elegans, have been developed to study C. albicans. These mini-models are well-suited for screening mutant libraries or diverse genetic backgrounds of C. albicans. Here we describe two approaches to study C. albicans infection using C. elegans. The first is a fecundity assay which measures host reproduction and monitors survival of individual hosts. The second is a lineage expansion assay which measures how C. albicans infection affects host population growth over multiple generations. Together, these assays provide a simple, cost-effective way to quickly assess C. albicans virulence.


Assuntos
Caenorhabditis elegans , Candida albicans , Candidíase , Animais , Caenorhabditis elegans/microbiologia , Candida albicans/isolamento & purificação , Candida albicans/patogenicidade , Modelos Animais de Doenças , Humanos , Camundongos , Fenótipo , Virulência
3.
Evolution ; 71(4): 1025-1038, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28195309

RESUMO

Variation in baseline ploidy is seen throughout the tree of life, yet the factors that determine why one ploidy level is maintained over another remain poorly understood. Experimental evolution studies using asexual fungal microbes with manipulated ploidy levels intriguingly reveals a propensity to return to the historical baseline ploidy, a phenomenon that we term "ploidy drive." We evolved haploid, diploid, and polyploid strains of the human fungal pathogen Candida albicans under three different nutrient limitation environments to test whether these conditions, hypothesized to select for low ploidy levels, could counteract ploidy drive. Strains generally maintained or acquired smaller genome sizes (measured as total nuclear DNA through flow cytometry) in minimal medium and under phosphorus depletion compared to in a complete medium, while mostly maintained or acquired increased genome sizes under nitrogen depletion. Improvements in fitness often ran counter to changes in genome size; in a number of scenarios lines that maintained their original genome size often increased in fitness more than lines that converged toward diploidy (the baseline ploidy of C. albicans). Combined, this work demonstrates a role for both the environment and genotype in determination of the rate of ploidy drive, and highlights questions that remain about the force(s) that cause genome size variation.


Assuntos
Candida albicans/fisiologia , Diploide , Haploidia , Fenômenos Fisiológicos da Nutrição , Poliploidia , Evolução Biológica , Candida albicans/genética , Interação Gene-Ambiente , Tamanho do Genoma , Genoma Fúngico , Genótipo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA