Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 12(41): 13375-82, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20820587

RESUMO

Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F(1)F(o)-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F(1)F(o)-ATP synthases. Under selected buffer conditions the mass of the intact F(1)F(o)-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases.


Assuntos
ATPases Translocadoras de Prótons/química , Animais , Bacillus/enzimologia , Bovinos , Humanos , Espectrometria de Massas , Mitocôndrias/enzimologia , Subunidades Proteicas/química
2.
J Biol Chem ; 285(42): 32105-15, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20716528

RESUMO

A lysine residue in the putative proton uptake pathway of the ATP synthase a-subunit is found only in alkaliphilic Bacillus species and is proposed to play roles in proton capture, retention and passage to the synthase rotor. Here, Lys-180 was replaced with alanine (Ala), glycine (Gly), cysteine (Cys), arginine (Arg), or histidine (His) in the chromosome of alkaliphilic Bacillus pseudofirmus OF4. All mutants exhibited octylglucoside-stimulated ATPase activity and ß-subunit levels at least as high as wild-type. Purified mutant F(1)F(0)-ATP synthases all contained substantial a-subunit levels. The mutants exhibited diverse patterns of native (no octylglucoside) ATPase activity and a range of defects in malate growth and in vitro ATP synthesis at pH 10.5. ATP synthesis by the Ala, Gly, and His mutants was also impaired at pH 7.5 in the presence of a protonophoric uncoupler. Thus Lys-180 plays a role when the protonmotive force is reduced at near neutral, not just at high pH. The Arg mutant exhibited no ATP synthesis activity in the alkaliphile setting although activity was reported for a K180R mutant of a thermoalkaliphile synthase (McMillan, D. G., Keis, S., Dimroth, P., and Cook, G. M. (2007) J. Biol. Chem. 282, 17395-17404). The hypothesis that a-subunits from extreme alkaliphiles and the thermoalkaliphile represent distinct variants was supported by demonstration of the importance of additional alkaliphile-specific a-subunit residues, not found in the thermoalkaliphile, for malate growth of B. pseudofirmus OF4. Finally, a mutant B. pseudofirmus OF4 synthase with switched positions of Lys-180 (helix 4) and Gly-212 (helix 5) retained significant coupled synthase activity accompanied by proton leakiness.


Assuntos
Complexos de ATP Sintetase , Bacillus/fisiologia , Proteínas de Bactérias , Isoenzimas , Lisina/genética , Fosforilação Oxidativa , Subunidades Proteicas , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Lisina/metabolismo , Dados de Sequência Molecular , Mutação , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência
3.
Biochim Biophys Acta ; 1797(8): 1362-77, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20193659

RESUMO

This review focuses on the ATP synthases of alkaliphilic bacteria and, in particular, those that successfully overcome the bioenergetic challenges of achieving robust H+-coupled ATP synthesis at external pH values>10. At such pH values the protonmotive force, which is posited to provide the energetic driving force for ATP synthesis, is too low to account for the ATP synthesis observed. The protonmotive force is lowered at a very high pH by the need to maintain a cytoplasmic pH well below the pH outside, which results in an energetically adverse pH gradient. Several anticipated solutions to this bioenergetic conundrum have been ruled out. Although the transmembrane sodium motive force is high under alkaline conditions, respiratory alkaliphilic bacteria do not use Na+- instead of H+-coupled ATP synthases. Nor do they offset the adverse pH gradient with a compensatory increase in the transmembrane electrical potential component of the protonmotive force. Moreover, studies of ATP synthase rotors indicate that alkaliphiles cannot fully resolve the energetic problem by using an ATP synthase with a large number of c-subunits in the synthase rotor ring. Increased attention now focuses on delocalized gradients near the membrane surface and H+ transfers to ATP synthases via membrane-associated microcircuits between the H+ pumping complexes and synthases. Microcircuits likely depend upon proximity of pumps and synthases, specific membrane properties and specific adaptations of the participating enzyme complexes. ATP synthesis in alkaliphiles depends upon alkaliphile-specific adaptations of the ATP synthase and there is also evidence for alkaliphile-specific adaptations of respiratory chain components.


Assuntos
Bactérias/enzimologia , ATPases Translocadoras de Prótons/fisiologia , Adaptação Fisiológica , Trifosfato de Adenosina/biossíntese , Sequência de Aminoácidos , Bacillus/enzimologia , Metabolismo Energético , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Fosforilação , ATPases Translocadoras de Prótons/química
4.
J Biol Chem ; 279(25): 26546-54, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15024007

RESUMO

Mitchell's (Mitchell, P. (1961) Nature 191, 144-148) chemiosmotic model of energy coupling posits a bulk electrochemical proton gradient (Deltap) as the sole driving force for proton-coupled ATP synthesis via oxidative phosphorylation (OXPHOS) and for other bioenergetic work. Two properties of proton-coupled OXPHOS by alkaliphilic Bacillus species pose a challenge to this tenet: robust ATP synthesis at pH 10.5 that does not correlate with the magnitude of the Deltap and the failure of artificially imposed potentials to substitute for respiration-generated potentials in energizing ATP synthesis at high pH (Krulwich, T. (1995) Mol. Microbiol. 15, 403-410). Here we show that these properties, in alkaliphilic Bacillus pseudofirmus OF4, depend upon alkaliphile-specific features in the proton pathway through the a- and c-subunits of ATP synthase. Site-directed changes were made in six such features to the corresponding sequence in Bacillus megaterium, which reflects the consensus sequence for non-alkaliphilic Bacillus. Five of the six single mutants assembled an active ATPase/ATP synthase, and four of these mutants exhibited a specific defect in non-fermentative growth at high pH. Most of these mutants lost the ability to generate the high phosphorylation potentials at low bulk Deltap that are characteristic of alkaliphiles. The aLys(180) and aGly(212) residues that are predicted to be in the proton uptake pathway of the a-subunit were specifically implicated in pH-dependent restriction of proton flux through the ATP synthase to and from the bulk phase. The evidence included greatly enhanced ATP synthesis in response to an artificially imposed potential at high pH. The findings demonstrate that the ATP synthase of extreme alkaliphiles has special features that are required for non-fermentative growth and OXPHOS at high pH.


Assuntos
Bacillus/enzimologia , Dimaprit/análogos & derivados , Oxigênio/metabolismo , ATPases Translocadoras de Prótons/química , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Western Blotting , Divisão Celular , Membrana Celular/metabolismo , Primers do DNA/química , Dimaprit/química , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Malatos/química , Dados de Sequência Molecular , Fosforilação Oxidativa , Consumo de Oxigênio , Fosforilação , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Fatores de Tempo
5.
J Biomol NMR ; 28(1): 43-57, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14739638

RESUMO

Structural information on membrane proteins lags far behind that on soluble proteins, in large part due to difficulties producing homogeneous, stable, structurally relevant samples in a membrane-like environment. In this study 25 membrane mimetics were screened using 2D (1)H-(15)N heteronuclear single quantum correlation NMR experiments to establish sample homogeneity and predict fitness for structure determination. A single detergent, 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-RAC-(1-glycerol)] (LPPG), yielded high quality NMR spectra with sample lifetimes greater than one month for the five proteins tested - R. sphaeroides LH1 alpha and beta subunits, E. coli and B. pseudofirmus OF4 ATP synthase c subunits, and S. aureus small multidrug resistance transporter - with 1, 2, or 4 membrane spanning alpha-helices, respectively. Site-specific spin labeling established interhelical distances in the drug transporter and genetically fused dimers of c subunits in LPPG consistent with in vivo distances. Optical spectroscopy showed that LH1 beta subunits form native-like complexes with bacteriochlorophyll a in LPPG. All the protein/micelle complexes were estimated to exceed 100 kDaltons by translational diffusion measurements. However, analysis of (15)N transverse, longitudinal and (15)N[(1)H] nuclear Overhauser effect relaxation measurements yielded overall rotational correlation times of 8 to 12 nsec, similar to a 15-20 kDalton protein tumbling isotropically in solution, and consistent with the high quality NMR data observed.


Assuntos
Detergentes/química , Glicerídeos/química , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Antiporters/química , Antiporters/farmacologia , Detergentes/farmacologia , Proteínas de Escherichia coli , Glicerídeos/farmacologia , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/farmacologia , Micelas , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/efeitos dos fármacos , Dobramento de Proteína , ATPases Translocadoras de Prótons/química , Marcadores de Spin
6.
Proc Natl Acad Sci U S A ; 100(18): 10213-8, 2003 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12917488

RESUMO

The atp operon of alkaliphilic Bacillus pseudofirmus OF4, as in most prokaryotes, contains the eight structural genes for the F-ATPase (ATP synthase), which are preceded by an atpI gene that encodes a membrane protein of unknown function. A tenth gene, atpZ, has been found in this operon, which is upstream of and overlapping with atpI. Most Bacillus species, and some other bacteria, possess atpZ homologues. AtpZ is predicted to be a membrane protein with a hairpin topology, and was detected by Western analyses. Deletion of atpZ, atpI, or atpZI from B. pseudofirmus OF4 led to a requirement for a greatly increased concentration of Mg2+ for growth at pH 7.5. Either atpZ, atpI, or atpZI complemented the similar phenotype of a triple mutant of Salmonella typhimurium (MM281), which is deficient in Mg2+ uptake. atpZ and atpI, separately and together, increased the Mg2+-sensitive 45Ca2+ uptake by vesicles of an Escherichia coli mutant that is defective in Ca2+ and Na+ efflux. We hypothesize that AtpZ and AtpI, as homooligomers, and perhaps as heterooligomers, are Mg2+ transporter, Ca2+ transporter, or channel proteins. Such proteins could provide Mg2+, which is required by ATP synthase, and also support charge compensation, when the enzyme is functioning in the hydrolytic direction; e.g., during cytoplasmic pH regulation.


Assuntos
Bacillus/genética , Genes Bacterianos , Magnésio/metabolismo , Óperon , ATPases Translocadoras de Prótons/genética , Sequência de Aminoácidos , Bacillus/metabolismo , Sequência de Bases , Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons , Dados de Sequência Molecular , Fenótipo , Regiões Promotoras Genéticas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA