Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Vaccine ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944577

RESUMO

BACKGROUND: Immune response to COVID-19 vaccine is diminished in patients with hematologic malignancy. There is limited data regarding response to vaccine doses in these patients. PURPOSE: To quantify the humoral immune response engendered by 4th and subsequent doses of SARS-CoV-2 vaccination as measured by anti-Spike (anti-S) antibody levels, based on dried blood spot (DBS) testing, in patients with hematologic malignancies. Anti-S binds to the spike protein of the SARS-CoV-2 virus and is indicative of vaccine immunogenicity. METHODS: We conducted a prospective study of hematologic malignancies between August 2021 and January 2023 at 12 sites across Canada. Participants were followed longitudinally and submitted finger-prick DBS cards at set intervals associated with vaccination. Samples were processed via high throughput ELISA assay to detect serum antibodies against nucleocapsid (N) and spike (S) proteins. RESULTS: We obtained 3071 samples on 790 unique patients. Of these, 372 unique participants with 1840 samples had anti-S results available post-4th, 5th or 6th COVID-19 vaccine dose and were included for analysis. Three hundred thirty-three patients of the 372 participants submitted a DBS sample post 4th dose. Of these, 257 patients (77.2%) had a positive anti-S antibody. A total of 198 patients had paired samples pre- and post-dose 4, of which 59 (29.7%) had a negative anti-S antibody pre-dose 4. Of these, 20 (33.4%) developed positive anti-S antibody post-dose 4. One hundred forty-nine patients submitted a DBS sample post-dose 5. Of these, 135 patients (90.6%) had positive anti-S antibody. A total of 52 had paired samples pre- and post-dose 5. Six (8.7%) had a negative anti-S antibody pre-dose 5, of which two (33.3%) developed positive anti-S antibody post-dose 5. Of these 372 patients, 123 (34%) reported COVID-19 infection and 4 (1%) had a COVID-19 related hospitalization. There were no reported deaths from COVID-19. CONCLUSIONS: This prospective cohort study showed that humoral immune response improved with subsequent doses of COVID-19 vaccines.

2.
Am Soc Clin Oncol Educ Book ; 43: e390778, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37163714

RESUMO

COVID-19 and our armamentarium of strategies to combat it have evolved dramatically since the virus first emerged in late 2019. Vaccination remains the primary strategy to prevent severe illness, although the protective effect can vary in patients with hematologic malignancy. Strategies such as additional vaccine doses and now bivalent boosters can contribute to increased immune response, especially in the face of evolving viral variants. Because of these new variants, no approved monoclonal antibodies are available for pre-exposure or postexposure prophylaxis. Patients with symptomatic, mild-to-moderate COVID-19 and risk features for developing severe COVID-19, who present within 5-7 days of symptom onset, should be offered outpatient therapy with nirmatrelvir/ritonavir (NR) or in some cases with intravenous (IV) remdesivir. NR interacts with many blood cancer treatments, and reviewing drug interactions is essential. Patients with severe COVID-19 should be managed with IV remdesivir, tocilizumab (or an alternate interleukin-6 receptor blocker), or baricitinib, as indicated based on the severity of illness. Dexamethasone can be considered on an individual basis, weighing oxygen requirements and patients' underlying disease and their perceived ability to clear infection. Finally, as CD19-targeted and B-cell maturation (BCMA)-targeted chimeric antigen receptor (CAR) T-cell therapies become more heavily used for relapsed/refractory hematologic malignancies, viral infections including COVID-19 are increasingly recognized as common complications, but data on risk factors and prophylaxis in this patient population are scarce. We summarize the available evidence regarding viral infections after CAR T-cell therapy.


Assuntos
COVID-19 , Neoplasias Hematológicas , Viroses , Humanos , Recidiva Local de Neoplasia , Viroses/etiologia , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/epidemiologia , Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/efeitos adversos
3.
JAMA Oncol ; 9(3): 386-394, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580318

RESUMO

Importance: Patients with cancer are known to have increased risk of COVID-19 complications, including death. Objective: To determine the association of COVID-19 vaccination with breakthrough infections and complications in patients with cancer compared to noncancer controls. Design, Setting, and Participants: Retrospective population-based cohort study using linked administrative databases in Ontario, Canada, in residents 18 years and older who received COVID-19 vaccination. Three matched groups were identified (based on age, sex, type of vaccine, date of vaccine): 1:4 match for patients with hematologic and solid cancer to noncancer controls (hematologic and solid cancers separately analyzed), 1:1 match between patients with hematologic and patients with solid cancer. Exposures: Cancer diagnosis. Main Outcomes and Measures: Outcomes occurring 14 days after receipt of second COVID-19 vaccination dose: primary outcome was SARS-CoV-2 breakthrough infection; secondary outcomes were emergency department visit, hospitalization, and death within 4 weeks of SARS-CoV-2 infection (end of follow-up March 31, 2022). Multivariable cumulative incidence function models were used to obtain adjusted hazard ratio (aHR) and 95% CIs. Results: A total of 289 400 vaccinated patients with cancer (39 880 hematologic; 249 520 solid) with 1 157 600 matched noncancer controls were identified; the cohort was 65.4% female, and mean (SD) age was 66 (14.0) years. SARS-CoV-2 breakthrough infection was higher in patients with hematologic cancer (aHR, 1.33; 95% CI, 1.20-1.46; P < .001) but not in patients with solid cancer (aHR, 1.00; 95% CI, 0.96-1.05; P = .87). COVID-19 severe outcomes (composite of hospitalization and death) were significantly higher in patients with cancer compared to patients without cancer (aHR, 1.52; 95% CI, 1.42-1.63; P < .001). Risk of severe outcomes was higher among patients with hematologic cancer (aHR, 2.51; 95% CI, 2.21-2.85; P < .001) than patients with solid cancer (aHR, 1.43; 95% CI, 1.24-1.64; P < .001). Patients receiving active treatment had a further heightened risk for COVID-19 severe outcomes, particularly those who received anti-CD20 therapy. Third vaccination dose was associated with lower infection and COVID-19 complications, except for patients receiving anti-CD20 therapy. Conclusions and Relevance: In this large population-based cohort study, patients with cancer had greater risk of SARS-CoV-2 infection and worse outcomes than patients without cancer, and the risk was highest for patients with hematologic cancer and any patients with cancer receiving active treatment. Triple vaccination was associated with lower risk of poor outcomes.


Assuntos
COVID-19 , Neoplasias Hematológicas , Neoplasias , Humanos , Feminino , Idoso , Masculino , Vacinas contra COVID-19/efeitos adversos , Infecções Irruptivas , Estudos de Coortes , Estudos Retrospectivos , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Neoplasias/epidemiologia , Vacinação , Ontário/epidemiologia
5.
J Natl Cancer Inst ; 115(2): 146-154, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36321960

RESUMO

BACKGROUND: In many jurisdictions, cancer patients were prioritized for COVID-19 vaccination because of increased risk of infection and death. To understand sociodemographic disparities that affected timely receipt of COVID-19 vaccination among cancer patients, we undertook a population-based study in Ontario, Canada. METHODS: Patients older than 18 years and diagnosed with cancer January 2010 to September 2020 were identified using administrative data; vaccination administration was captured between approval (December 2020) up to February 2022. Factors associated with time to vaccination were evaluated using multivariable Cox proportional hazards regression. RESULTS: The cohort consisted of 356 535 patients, the majority of whom had solid tumor cancers (85.9%) and were not on active treatment (74.1%); 86.8% had received at least 2 doses. The rate of vaccination was 25% lower in recent (hazard ratio [HR] = 0.74, 95% confidence interval [CI] = 0.72 to 0.76) and nonrecent immigrants (HR = 0.80, 95% CI = 0.79 to 0.81). A greater proportion of unvaccinated patients were from neighborhoods with a high concentration of new immigrants or self-reported members of racialized groups (26.0% vs 21.3%, standardized difference = 0.111, P < .001), residential instability (27.1% vs 23.0%, standardized difference = 0.094, P < .001), or material deprivation (22.1% vs 16.8%, standardized difference = 0.134, P < .001) and low socioeconomic status (20.9% vs 16.0%, standardized difference = 0.041, P < .001). The rate of vaccination was 20% lower in patients from neighborhoods with the lowest socioeconomic status (HR = 0.82, 95% CI = 0.81 to 0.84) and highest material deprivation (HR = 0.80, 95% CI = 0.78 to 0.81) relative to those in more advantaged neighborhoods. CONCLUSIONS: Despite funding of vaccines and prioritization of high-risk populations, marginalized patients were less likely to be vaccinated. Differences are likely due to the interplay between systemic barriers to access and cultural or social influences affecting uptake.


Assuntos
COVID-19 , Neoplasias , Humanos , Vacinas contra COVID-19 , Vacinação , Ontário
8.
Blood Adv ; 6(2): 679-685, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35072726

RESUMO

Choosing Wisely is a medical stewardship and quality-improvement initiative led by the American Board of Internal Medicine Foundation in collaboration with leading medical societies in the United States. The American Society of Hematology (ASH) has been an active participant in the Choosing Wisely project. In 2019, ASH and the American Society of Pediatric Hematology/Oncology (ASPHO) formed a joint task force to solicit, evaluate, and select items for a pediatric-focused Choosing Wisely list. By using an iterative process and an evidence-based method, the ASH-ASPHO Task Force identified 5 hematologic tests and treatments that health care providers and patients should question because they are not supported by evidence, and/or they involve risks of medical and financial costs with low likelihood of benefit. The ASH-ASPHO Choosing Wisely recommendations are as follows: (1) avoid routine preoperative hemostatic testing in an otherwise healthy child with no previous personal or family history of bleeding, (2) avoid platelet transfusion in asymptomatic children with a platelet count >10 × 103/µL unless an invasive procedure is planned, (3) avoid thrombophilia testing in children with venous access-associated thrombosis and no positive family history, (4) avoid packed red blood cells transfusion for asymptomatic children with iron deficiency anemia and no active bleeding, and (5) avoid routine administration of granulocyte colony-stimulating factor for prophylaxis of children with asymptomatic autoimmune neutropenia and no history of recurrent or severe infections. We recommend that health care providers carefully consider the anticipated risks and benefits of these identified tests and treatments before performing them.


Assuntos
Testes Hematológicos , Sociedades Médicas , Criança , Transfusão de Eritrócitos , Testes Hematológicos/métodos , Hemostasia , Humanos , Estados Unidos
9.
Nat Med ; 27(12): 2192-2199, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34873345

RESUMO

Advanced systemic mastocytosis (AdvSM) is a rare, KIT D816V-driven hematologic neoplasm characterized by mast cell infiltration and shortened survival. We report the results of a prespecified interim analysis of an ongoing pivotal single-arm phase 2 trial (no. NCT03580655 ) of avapritinib, a potent, selective KIT D816V inhibitor administered primarily at a once-daily starting dose of 200 mg in patients with AdvSM (n = 62). The primary endpoint was overall response rate (ORR). Secondary endpoints included mean baseline change in AdvSM-Symptom Assessment Form Total Symptom Score and quality of life, time to response, duration of response, progression-free survival, overall survival, changes in measures of disease burden and safety. The primary endpoint was successfully met (P = 1.6 × 10-9), with an ORR of 75% (95% confidence interval 57-89) in 32 response-evaluable patients with AdvSM who had sufficient follow-up for response assessment, including 19% with complete remission with full or partial hematologic recovery. Reductions of ≥50% from baseline in serum tryptase (93%), bone marrow mast cells (88%) and KIT D816V variant allele fraction (60%) were observed. The most frequent grade ≥3 adverse events were neutropenia (24%), thrombocytopenia (16%) and anemia (16%). Avapritinib demonstrated a high rate of clinical, morphological and molecular responses and was generally well tolerated in patients with AdvSM.


Assuntos
Mastocitose Sistêmica/tratamento farmacológico , Pirazóis/uso terapêutico , Pirróis/uso terapêutico , Triazinas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaios Clínicos Fase II como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pirazóis/efeitos adversos , Pirróis/efeitos adversos , Triazinas/efeitos adversos
10.
Cochrane Database Syst Rev ; 9: CD014739, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34582035

RESUMO

BACKGROUND: Multiple myeloma is a malignant plasma cell disorder characterised by clonal plasma cells that cause end-organ damage such as renal failure, lytic bone lesions, hypercalcaemia and/or anaemia. People with multiple myeloma are treated with immunomodulatory agents including lenalidomide, pomalidomide, and thalidomide. Multiple myeloma is associated with an increased risk of thromboembolism, which appears to be further increased in people receiving immunomodulatory agents. OBJECTIVES: (1) To systematically review the evidence for the relative efficacy and safety of aspirin, oral anticoagulants, or parenteral anticoagulants in ambulatory patients with multiple myeloma receiving immunomodulatory agents who otherwise have no standard therapeutic or prophylactic indication for anticoagulation. (2) To maintain this review as a living systematic review by continually running the searches and incorporating newly identified studies. SEARCH METHODS: We conducted a comprehensive literature search that included (1) a major electronic search (14 June 2021) of the following databases: Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE via Ovid, and Embase via Ovid; (2) hand-searching of conference proceedings; (3) checking of reference lists of included studies; and (4) a search for ongoing studies in trial registries. As part of the living systematic review approach, we are running continual searches, and we will incorporate new evidence rapidly after it is identified. SELECTION CRITERIA: Randomised controlled trials (RCTs) assessing the benefits and harms of oral anticoagulants such as vitamin K antagonist (VKA) and direct oral anticoagulants (DOAC), anti-platelet agents such as aspirin (ASA), and parenteral anticoagulants such as low molecular weight heparin (LMWH)in ambulatory patients with multiple myeloma receiving immunomodulatory agents. DATA COLLECTION AND ANALYSIS: Using a standardised form, we extracted data in duplicate on study design, participants, interventions, outcomes of interest, and risk of bias. Outcomes of interest included all-cause mortality, symptomatic deep vein thrombosis (DVT), pulmonary embolism (PE), major bleeding, and minor bleeding. For each outcome we calculated the risk ratio (RR) with its 95% confidence interval (CI) and the risk difference (RD) with its 95% CI. We then assessed the certainty of evidence at the outcome level following the GRADE approach (GRADE Handbook). MAIN RESULTS: We identified 1015 identified citations and included 11 articles reporting four RCTs that enrolled 1042 participants. The included studies made the following comparisons: ASA versus VKA (one study); ASA versus LMWH (two studies); VKA versus LMWH (one study); and ASA versus DOAC (two studies, one of which was an abstract). ASA versus VKA One RCT compared ASA to VKA at six months follow-up. The data did not confirm or exclude a beneficial or detrimental effect of ASA relative to VKA on all-cause mortality (RR 3.00, 95% CI 0.12 to 73.24; RD 2 more per 1000, 95% CI 1 fewer to 72 more; very low-certainty evidence); symptomatic DVT (RR 0.57, 95% CI 0.24 to 1.33; RD 27 fewer per 1000, 95% CI 48 fewer to 21 more; very low-certainty evidence); PE (RR 1.00, 95% CI 0.25 to 3.95; RD 0 fewer per 1000, 95% CI 14 fewer to 54 more; very low-certainty evidence); major bleeding (RR 7.00, 95% CI 0.36 to 134.72; RD 6 more per 1000, 95% CI 1 fewer to 134 more; very low-certainty evidence); and minor bleeding (RR 6.00, 95% CI 0.73 to 49.43; RD 23 more per 1000, 95% CI 1 fewer to 220 more; very low-certainty evidence). One RCT compared ASA to VKA at two years follow-up. The data did not confirm or exclude a beneficial or detrimental effect of ASA relative to VKA on all-cause mortality (RR 0.50, 95% CI 0.05 to 5.47; RD 5 fewer per 1000, 95% CI 9 fewer to 41 more; very low-certainty evidence); symptomatic DVT (RR 0.71, 95% CI 0.35 to 1.44; RD 22 fewer per 1000, 95% CI 50 fewer to 34 more; very low-certainty evidence); and PE (RR 1.00, 95% CI 0.25 to 3.95; RD 0 fewer per 1000, 95% CI 14 fewer to 54 more; very low-certainty evidence). ASA versus LMWH Two RCTs compared ASA to LMWH at six months follow-up. The pooled data did not confirm or exclude a beneficial or detrimental effect of ASA relative to LMWH on all-cause mortality (RR 1.00, 95% CI 0.06 to 15.81; RD 0 fewer per 1000, 95% CI 2 fewer to 38 more; very low-certainty evidence); symptomatic DVT (RR 1.23, 95% CI 0.49 to 3.08; RD 5 more per 1000, 95% CI 11 fewer to 43 more; very low-certainty evidence); PE (RR 7.71, 95% CI 0.97 to 61.44; RD 7 more per 1000, 95% CI 0 fewer to 60 more; very low-certainty evidence); major bleeding (RR 6.97, 95% CI 0.36 to 134.11; RD 6 more per 1000, 95% CI 1 fewer to 133 more; very low-certainty evidence); and minor bleeding (RR 1.42, 95% CI 0.35 to 5.78; RD 4 more per 1000, 95% CI 7 fewer to 50 more; very low-certainty evidence). One RCT compared ASA to LMWH at two years follow-up. The pooled data did not confirm or exclude a beneficial or detrimental effect of ASA relative to LMWH on all-cause mortality (RR 1.00, 95% CI 0.06 to 15.89; RD 0 fewer per 1000, 95% CI 4 fewer to 68 more; very low-certainty evidence); symptomatic DVT (RR 1.20, 95% CI 0.53 to 2.72; RD 9 more per 1000, 95% CI 21 fewer to 78 more; very low-certainty evidence); and PE (RR 9.00, 95% CI 0.49 to 166.17; RD 8 more per 1000, 95% CI 1 fewer to 165 more; very low-certainty evidence). VKA versus LMWH One RCT compared VKA to LMWH at six months follow-up. The data did not confirm or exclude a beneficial or detrimental effect of VKA relative to LMWH on all-cause mortality (RR 0.33, 95% CI 0.01 to 8.10; RD 3 fewer per 1000, 95% CI 5 fewer to 32 more; very low-certainty evidence); symptomatic DVT (RR 2.32, 95% CI 0.91 to 5.93; RD 36 more per 1000, 95% CI 2 fewer to 135 more; very low-certainty evidence); PE (RR 8.96, 95% CI 0.49 to 165.42; RD 8 more per 1000, 95% CI 1 fewer to 164 more; very low-certainty evidence); and minor bleeding (RR 0.33, 95% CI 0.03 to 3.17; RD 9 fewer per 1000, 95% CI 13 fewer to 30 more; very low-certainty evidence). The study reported that no major bleeding occurred in either arm. One RCT compared VKA to LMWH at two years follow-up. The data did not confirm or exclude a beneficial or detrimental effect of VKA relative to LMWH on all-cause mortality (RR 2.00, 95% CI 0.18 to 21.90; RD 5 more per 1000, 95% CI 4 fewer to 95 more; very low-certainty evidence); symptomatic DVT (RR 1.70, 95% CI 0.80 to 3.63; RD 32 more per 1000, 95% CI 9 fewer to 120 more; very low-certainty evidence); and PE (RR 9.00, 95% CI 0.49 to 166.17; RD 8 more per 1000, 95% CI 1 fewer to 165 more; very low-certainty evidence). ASA versus DOAC One RCT compared ASA to DOAC at six months follow-up. The data did not confirm or exclude a beneficial or detrimental effect of ASA relative to DOAC on DVT, PE, and major bleeding and minor bleeding (minor bleeding: RR 5.00, 95% CI 0.31 to 79.94; RD 4 more per 1000, 95% CI 1 fewer to 79 more; very low-certainty evidence). The study reported that no DVT, PE, or major bleeding events occurred in either arm. These results did not change in a meta-analysis including the study published as an abstract. AUTHORS' CONCLUSIONS: The certainty of the available evidence for the comparative effects of ASA, VKA, LMWH, and DOAC on all-cause mortality, DVT, PE, or bleeding was either low or very low. People with multiple myeloma considering antithrombotic agents should balance the possible benefits of reduced thromboembolic complications with the possible harms and burden of anticoagulants. Editorial note: This is a living systematic review. Living systematic reviews offer a new approach to review updating in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.


Assuntos
Fibrinolíticos , Mieloma Múltiplo , Anticoagulantes/efeitos adversos , Heparina , Heparina de Baixo Peso Molecular , Humanos , Mieloma Múltiplo/tratamento farmacológico
11.
JAMA Oncol ; 7(12): 1882-1890, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473192

RESUMO

Importance: The COVID-19 pandemic has had consequences for patients with cancer worldwide and has been associated with delays in diagnosis, interruption of treatment and follow-up care, and increases in overall infection rates and premature mortality. Observations: Despite the challenges experienced during the pandemic, the global oncology community has responded with an unprecedented level of investigation, collaboration, and technological innovation through the rapid development of COVID-19 registries that have allowed an increased understanding of the natural history, risk factors, and outcomes of patients with cancer who are diagnosed with COVID-19. This review describes 14 major registries comprising more than 28 500 patients with cancer and COVID-19; these ongoing registry efforts have provided an improved understanding of the impact and outcomes of COVID-19 among patients with cancer. Conclusions and Relevance: An initiative is needed to promote active collaboration between different registries to improve the quality and consistency of information. Well-designed prospective and randomized clinical trials are needed to collect high-level evidence to guide long-term epidemiologic, behavioral, and clinical decision-making for this and future pandemics.


Assuntos
COVID-19 , Neoplasias , Pandemias , Sistema de Registros , COVID-19/epidemiologia , COVID-19/terapia , Humanos , Neoplasias/epidemiologia , Neoplasias/terapia
12.
Blood Adv ; 5(12): 2624-2643, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34152403

RESUMO

The objective of this study was to perform a systematic review of the literature on vaccine responsiveness in patients who have received anti-CD20 therapy. PubMed and EMBASE were searched up to 4 January 2021 to identify studies of vaccine immunogenicity in patients treated with anti-CD20 therapy, including patients with hematologic malignancy or autoimmune disease. The primary outcomes were seroprotection (SP), seroconversion (SC), and/or seroresponse rates for each type of vaccine reported. As the pandemic influenza vaccine (2009 H1N1) has standardized definitions for SP and SC, and represented a novel primary antigen similar to the COVID-19 vaccine, meta-analysis was conducted for SC of studies of this vaccine. Pooled estimates, relative benefit ratios (RBs), and 95% confidence intervals (CIs) were calculated using a random-effects model. Thirty-eight studies (905 patients treated with anti-CD20 therapy) were included (19 studies of patients with hematologic malignancies). Patients on active (<3 months since last dose) anti-CD20 therapy had poor responses to all types of vaccines. The pooled estimate for SC after 1 pandemic influenza vaccine dose in these patients was 3% (95% CI, 0% to 9%), with an RB of 0.05 (95% CI, 0-0.73) compared with healthy controls and 0.22 (95% CI, 0.09-0.56) compared with disease controls. SC compared with controls seems abrogated for at least 6 months following treatment (3-6 months post anti-CD20 therapy with an RB of 0.50 [95% CI, 0.24-1.06] compared with healthy and of 0.44 [95% CI, 0.23-0.84] compared with disease controls). For all vaccine types, response to vaccination improves incrementally over time, but may not reach the level of healthy controls even 12 months after therapy.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
13.
Pediatr Blood Cancer ; 68(8): e28967, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34047047

RESUMO

Choosing Wisely is a medical stewardship and quality-improvement initiative led by the American Board of Internal Medicine Foundation in collaboration with leading medical societies in the United States. The American Society of Hematology (ASH) has been an active participant in the Choosing Wisely project. In 2019, ASH and the American Society of Pediatric Hematology/Oncology (ASPHO) formed a joint task force to solicit, evaluate, and select items for a pediatric-focused Choosing Wisely list. By using an iterative process and an evidence-based method, the ASH-ASPHO Task Force identified 5 hematologic tests and treatments that health care providers and patients should question because they are not supported by evidence, and/or they involve risks of medical and financial costs with low likelihood of benefit. The ASH-ASPHO Choosing Wisely recommendations are as follows: (1) avoid routine preoperative hemostatic testing in an otherwise healthy child with no previous personal or family history of bleeding, (2) avoid platelet transfusion in asymptomatic children with a platelet count 10 × 103 /µL unless an invasive procedure is planned, (3) avoid thrombophilia testing in children with venous access-associated thrombosis and no positive family history, (4) avoid packed red blood cells transfusion for asymptomatic children with iron deficiency anemia and no active bleeding, and (5) avoid routine administration of granulocyte colony-stimulating factor for prophylaxis of children with asymptomatic autoimmune neutropenia and no history of recurrent or severe infections. We recommend that health care providers carefully consider the anticipated risks and benefits of these identified tests and treatments before performing them.


Assuntos
Testes Hematológicos , Criança , Transfusão de Eritrócitos , Hemostasia , Humanos , Deficiências de Ferro , Sociedades Médicas , Estados Unidos
14.
Blood Adv ; 5(4): 927-974, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33570602

RESUMO

BACKGROUND: Venous thromboembolism (VTE) is a common complication among patients with cancer. Patients with cancer and VTE are at a markedly increased risk for morbidity and mortality. OBJECTIVE: These evidence-based guidelines of the American Society of Hematology (ASH) are intended to support patients, clinicians, and other health care professionals in their decisions about the prevention and treatment of VTE in patients with cancer. METHODS: ASH formed a multidisciplinary guideline panel balanced to minimize potential bias from conflicts of interest. The guideline development process was supported by updated or new systematic evidence reviews. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to assess evidence and make recommendations. RESULTS: Recommendations address mechanical and pharmacological prophylaxis in hospitalized medical patients with cancer, those undergoing a surgical procedure, and ambulatory patients receiving cancer chemotherapy. The recommendations also address the use of anticoagulation for the initial, short-term, and long-term treatment of VTE in patients with cancer. CONCLUSIONS: Strong recommendations include not using thromboprophylaxis in ambulatory patients receiving cancer chemotherapy at low risk of VTE and to use low-molecular-weight heparin (LMWH) for initial treatment of VTE in patients with cancer. Conditional recommendations include using thromboprophylaxis in hospitalized medical patients with cancer, LMWH or fondaparinux for surgical patients with cancer, LMWH or direct oral anticoagulants (DOAC) in ambulatory patients with cancer receiving systemic therapy at high risk of VTE and LMWH or DOAC for initial treatment of VTE, DOAC for the short-term treatment of VTE, and LMWH or DOAC for the long-term treatment of VTE in patients with cancer.


Assuntos
Hematologia , Neoplasias , Tromboembolia Venosa , Anticoagulantes/uso terapêutico , Heparina de Baixo Peso Molecular , Humanos , Neoplasias/complicações , Neoplasias/terapia , Estados Unidos , Tromboembolia Venosa/tratamento farmacológico , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/prevenção & controle
15.
Blood Adv ; 4(23): 5966-5975, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33278301

RESUMO

Coronavirus disease 2019 (COVID-19) is an illness resulting from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in late 2019. Patients with cancer, and especially those with hematologic malignancies, may be at especially high risk of adverse outcomes, including mortality resulting from COVID-19 infection. The ASH Research Collaborative COVID-19 Registry for Hematology was developed to study features and outcomes of COVID-19 infection in patients with underlying blood disorders, such as hematologic malignancies. At the time of this report, data from 250 patients with blood cancers from 74 sites around the world had been entered into the registry. The most commonly represented malignancies were acute leukemia (33%), non-Hodgkin lymphoma (27%), and myeloma or amyloidosis (16%). Patients presented with a myriad of symptoms, most frequently fever (73%), cough (67%), dyspnea (50%), and fatigue (40%). Use of COVID-19-directed therapies, such as hydroxychloroquine (n = 76) or azithromycin (n = 59), was common. Overall mortality was 28%. Patients with a physician-estimated prognosis from the underlying hematologic malignancy of <12 months at the time of COVID-19 diagnosis and those with relapsed/refractory disease experienced a higher proportion of moderate/severe COVID-19 disease and death. In some instances, death occurred after a decision was made to forgo intensive care unit admission in favor of a palliative approach. Taken together, these data support the emerging consensus that patients with hematologic malignancies experience significant morbidity and mortality resulting from COVID-19 infection. Batch submissions from sites with high incidence of COVID-19 infection are planned to support future analyses.


Assuntos
Tratamento Farmacológico da COVID-19 , Neoplasias Hematológicas/patologia , Adolescente , Adulto , Idoso , Azitromicina/uso terapêutico , COVID-19/complicações , COVID-19/mortalidade , COVID-19/virologia , Feminino , Neoplasias Hematológicas/complicações , Humanos , Hidroxicloroquina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Prognóstico , Sistema de Registros , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Taxa de Sobrevida , Resultado do Tratamento , Adulto Jovem
16.
Blood ; 136(25): 2881-2892, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33113551

RESUMO

Outcomes for patients with hematologic malignancy infected with COVID-19 have not been aggregated. The objective of this study was to perform a systematic review and meta-analysis to estimate the risk of death and other important outcomes for these patients. We searched PubMed and EMBASE up to 20 August 2020 to identify reports of patients with hematologic malignancy and COVID-19. The primary outcome was a pooled mortality estimate, considering all patients and only hospitalized patients. Secondary outcomes included risk of intensive care unit admission and ventilation in hospitalized patients. Subgroup analyses included mortality stratified by age, treatment status, and malignancy subtype. Pooled prevalence, risk ratios (RRs), and 95% confidence intervals (CIs) were calculated using a random-effects model. Thirty-four adult and 5 pediatric studies (3377 patients) from Asia, Europe, and North America were included (14 of 34 adult studies included only hospitalized patients). Risk of death among adult patients was 34% (95% CI, 28-39; N = 3240) in this sample of predominantly hospitalized patients. Patients aged ≥60 years had a significantly higher risk of death than patients <60 years (RR, 1.82; 95% CI, 1.45-2.27; N = 1169). The risk of death in pediatric patients was 4% (95% CI, 1-9; N = 102). RR of death comparing patients with recent systemic anticancer therapy to no treatment was 1.17 (95% CI, 0.83-1.64; N = 736). Adult patients with hematologic malignancy and COVID-19, especially hospitalized patients, have a high risk of dying. Patients ≥60 years have significantly higher mortality; pediatric patients appear to be relatively spared. Recent cancer treatment does not appear to significantly increase the risk of death.


Assuntos
COVID-19/complicações , Neoplasias Hematológicas/mortalidade , Hospitalização/estatística & dados numéricos , Unidades de Terapia Intensiva/estatística & dados numéricos , SARS-CoV-2/isolamento & purificação , COVID-19/transmissão , COVID-19/virologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/virologia , Humanos , Prognóstico , Taxa de Sobrevida
17.
Blood Adv ; 4(18): 4574-4583, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32960959

RESUMO

Systems-based hematology is dedicated to improving care delivery for patients with blood disorders. First defined by the American Society of Hematology in 2015, the idea of a systems-based hematologist arose from evolving pressures in the health care system and increasing recognition of opportunities to optimize the quality and cost effectiveness of hematologic care. In this review, we begin with a proposed framework to formalize the discussion of the range of initiatives within systems-based hematology. Classification by 2 criteria, project scope and method of intervention, facilitates comparison between initiatives and supports dialogue for future efforts. Next, we present published examples of successful systems-based initiatives in the field of hematology, including efforts to improve stewardship in the diagnosis and management of complex hematologic disorders (eg, heparin-induced thrombocytopenia and thrombophilias), the development of programs to promote appropriate use of hematologic therapies (eg, blood products, inferior vena cava filters, and anticoagulation), changes in care delivery infrastructure to improve access to hematologic expertise (eg, electronic consultation and disorder-specific care pathways), and others. The range of projects illustrates the broad potential for interventions and highlights different metrics used to quantify improvements in care delivery. We conclude with a discussion about future directions for the field of systems-based hematology, including extension to malignant disorders and the need to define, expand, and support career pathways.


Assuntos
Doenças Hematológicas , Hematologia , Atenção à Saúde , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/terapia , Humanos
18.
Clin Immunol ; 211: 108321, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31812707

RESUMO

INTRODUCTION: Adenosine deaminase (ADA) deficiency causes severe immunodeficiency that is lethal in infancy. Enzyme replacement therapy (ERT) can improve the metabolic, immune and non-immune abnormalities in patients prior to transplantation, however, its benefits over extended periods are not well characterized. We describe a 28-year-old female who received ERT for 27 years. She suffered from EBV negative B cell lymphoma of the hip at 14 years of age and Guillian-Barre Syndrome 2 years later. At 22 years of age, she experienced a gastrointestinal infection with Mycobacterium genavense. At 26 years of age, lymphoma reoccurred with multiple liver lesions followed by Mycobacterium genavense infection with dissemination to the brain. Throughout this period, ADA activity in the plasma was within the therapeutic range. Repeated evaluations demonstrated very low lymphocyte counts and impaired T cell function. CONCLUSIONS: ERT might be insufficient to maintain normal immunity over extended periods in some ADA-deficient patients.


Assuntos
Adenosina Desaminase/deficiência , Agamaglobulinemia/tratamento farmacológico , Terapia de Reposição de Enzimas , Imunodeficiência Combinada Severa/tratamento farmacológico , Adenosina Desaminase/uso terapêutico , Adulto , Agamaglobulinemia/epidemiologia , Feminino , Humanos , Morbidade , Imunodeficiência Combinada Severa/epidemiologia
19.
PLoS Med ; 16(8): e1002867, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31430296

RESUMO

BACKGROUND: Iron deficiency (ID) in pregnancy is a common problem that can compromise both maternal and fetal health. Although daily iron supplementation is a simple and effective means of treating ID in pregnancy, ID and ID anemia (IDA) often go unrecognized and untreated due to lack of knowledge of their implications and competing clinical priorities. METHODS AND FINDINGS: In order to enhance screening and management of ID and IDA in pregnancy, we developed a novel quality-improvement toolkit: ID in pregnancy with maternal iron optimization (IRON MOM), implemented at St. Michael's Hospital in Toronto, Canada. It included clinical pathways for diagnosis and management, educational resources for clinicians and patients, templated laboratory requisitions, and standardized oral iron prescriptions. To assess the impact of IRON MOM, we retrospectively extracted laboratory data of all women seen in both the obstetrics clinic and the inpatient delivery ward settings from the electronic patient record (EPR) to compare measures pre- and post-implementation of the toolkit: a process measure of the rates of ferritin testing, and outcome measures of the proportion of women with an antenatal (predelivery) hemoglobin value below 100 g/L (anemia), the proportion of women who received a red blood cell (RBC) transfusion during pregnancy, and the proportion of women who received an RBC transfusion immediately following delivery or in the 8-week postpartum period. The pre-intervention period was from January 2012 to December 2016, and the post-intervention period was from January 2017 to December 2017. From the EPR, 1,292 and 2,400 ferritin tests and 16,603 and 3,282 antenatal hemoglobin results were extracted pre- and post-intervention, respectively. One year after implementation of IRON MOM, we found a 10-fold increase in the rate of ferritin testing in the obstetric clinics at our hospital and a lower risk of antenatal hemoglobin values below 100 g/L (pre-intervention 13.5% [95% confidence interval (CI) 13.0%-14.11%]; post-intervention 10.6% [95% CI 9.6%-11.7%], p < 0.0001). In addition, a significantly lower proportion of women received an RBC transfusion during their pregnancy (1.2% pre-intervention versus 0.8% post-intervention, p = 0.0499) or immediately following delivery and in the 8 weeks following (2.3% pre-intervention versus 1.6% post-intervention, p = 0.0214). Limitations of this study include the use of aggregate data extracted from the EPR, and lack of a control group. CONCLUSIONS: The introduction of a standardized toolkit including diagnostic and management pathways as well as other aids increased ferritin testing and decreased the incidence of anemia among women presenting for delivery at our site. This strategy also resulted in reduced proportions of women receiving RBC transfusion during pregnancy and in the first 8 weeks postpartum. The IRON MOM toolkit is a low-tech strategy that could be easily scaled to other settings.


Assuntos
Anemia Ferropriva/complicações , Complicações na Gravidez/diagnóstico , Melhoria de Qualidade , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/terapia , Estudos Controlados Antes e Depois , Procedimentos Clínicos , Transfusão de Eritrócitos , Feminino , Ferritinas/sangue , Humanos , Assistência Perinatal/métodos , Gravidez , Complicações na Gravidez/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA