Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7998): 392-400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086420

RESUMO

An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies1. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections2-6. However, it is unknown whether memory T cells alone can effectively surveil the respiratory tract to the extent that they eliminate or greatly reduce viral transmission following exposure of an individual to infection. Here we use a mouse model of natural parainfluenza virus transmission to quantify the extent to which memory CD8+ T cells resident in the respiratory tract can provide herd immunity by reducing both the susceptibility of acquiring infection and the extent of transmission, even in the absence of virus-specific antibodies. We demonstrate that protection by resident memory CD8+ T cells requires the antiviral cytokine interferon-γ (IFNγ) and leads to altered transcriptional programming of epithelial cells within the respiratory tract. These results suggest that tissue-resident CD8+ T cells in the respiratory tract can have important roles in protecting the host against viral disease and limiting viral spread throughout the population.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Células T de Memória , Infecções por Paramyxoviridae , Sistema Respiratório , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Imunidade Coletiva/imunologia , Memória Imunológica/imunologia , Interferon gama/imunologia , Células T de Memória/imunologia , Paramyxoviridae/imunologia , Paramyxoviridae/fisiologia , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/prevenção & controle , Infecções por Paramyxoviridae/transmissão , Infecções por Paramyxoviridae/virologia , Sistema Respiratório/citologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Transcrição Gênica , Humanos
2.
Heliyon ; 9(6): e17527, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416674

RESUMO

The transcription factor Interferon regulatory factor 8 (IRF8) is involved in maintaining B cell identity. However, how IRF8 regulates T cell independent B cell responses are not fully characterized. Here, an in vivo CRISPR/Cas9 system was optimized to generate Irf8-deficient murine B cells and used to determine the role of IRF8 in B cells responding to LPS stimulation. Irf8-deficient B cells more readily formed CD138+ plasmablasts in response to LPS with the principal dysregulation occurring at the activated B cell stage. Transcriptional profiling revealed an upregulation of plasma cell associated genes prematurely in activated B cells and a failure to repress the gene expression programs of IRF1 and IRF7 in Irf8-deficient cells. These data expand on the known roles of IRF8 in regulating B cell identity by preventing premature plasma cell formation and highlight how IRF8 helps evolve TLR responses away from the initial activation towards those driving humoral immunity.

3.
J Immunol ; 203(8): 2121-2129, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31501259

RESUMO

Ab-secreting cells (ASC) or plasma cells are essential components of the humoral immune system. Although Abs of different isotypes have distinct functions, it is not known if the ASC that secrete each isotype are also distinct. ASC downregulate their surface BCR upon differentiation, hindering analyses that couple BCR information to other molecular characteristics. In this study, we developed a methodology using fixation, permeabilization, and intracellular staining coupled with cell sorting and reversal of the cross-links to allow RNA sequencing of isolated cell subsets. Using hemagglutinin and nucleoprotein Ag-specific B cell tetramers and intracellular staining for IgM, IgG, and IgA isotypes, we were able to derive and compare the gene expression programs of ASC subsets that were responding to the same Ags following influenza infection in mice. Intriguingly, whereas a shared ASC signature was identified, each ASC isotype-specific population expressed distinct transcriptional programs controlling cellular homing, metabolism, and potential effector functions. Additionally, we extracted and compared BCR clonotypes and found that each ASC isotype contained a unique, clonally related CDR3 repertoire. In summary, these data reveal specific complexities in the transcriptional programming of Ag-specific ASC populations.


Assuntos
Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Influenza Humana/imunologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Transcriptoma , Animais , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas
4.
Nat Immunol ; 20(8): 1071-1082, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31263277

RESUMO

Systemic lupus erythematosus (SLE) is characterized by the expansion of extrafollicular pathogenic B cells derived from newly activated naive cells. Although these cells express distinct markers, their epigenetic architecture and how it contributes to SLE remain poorly understood. To address this, we determined the DNA methylomes, chromatin accessibility profiles and transcriptomes from five human B cell subsets, including a newly defined effector B cell subset, from subjects with SLE and healthy controls. Our data define a differentiation hierarchy for the subsets and elucidate the epigenetic and transcriptional differences between effector and memory B cells. Importantly, an SLE molecular signature was already established in resting naive cells and was dominated by enrichment of accessible chromatin in motifs for AP-1 and EGR transcription factors. Together, these factors acted in synergy with T-BET to shape the epigenome of expanded SLE effector B cell subsets. Thus, our data define the molecular foundation of pathogenic B cell dysfunction in SLE.


Assuntos
Subpopulações de Linfócitos B/patologia , Metilação de DNA/genética , Epigênese Genética/genética , Lúpus Eritematoso Sistêmico/genética , Subpopulações de Linfócitos B/imunologia , Montagem e Desmontagem da Cromatina/fisiologia , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Fator de Transcrição AP-1/genética , Transcriptoma/genética
5.
Int J Oncol ; 44(1): 35-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173829

RESUMO

Neuroblastoma is a common pediatric solid tumor that exhibits a striking clinical bipolarity: favorable and unfavorable. The survival rate of children with unfavorable neuroblastoma remains low among all childhood cancers. MYCN and MYC play a crucial role in determining the malignancy of unfavorable neuroblastomas, whereas high-level expression of the favorable neuroblastoma genes is associated with a good disease outcome and confers growth suppression of neuroblastoma cells. A small fraction of neuroblastomas harbors TP53 mutations at diagnosis, but a higher proportion of the relapse cases acquire TP53 mutations. In this study, we investigated the effect of S(+)-ibuprofen on neuroblastoma cell lines, focusing on the expression of the MYCN, MYC, AKT, p53 proteins and the favorable neuroblastoma genes in vitro as biomarkers of malignancy. Treatment of neuroblastoma cell lines with S(+)-ibuprofen resulted in a significant growth suppression. This growth effect was accompanied by a marked decrease in the expression of MYC, MYCN, AKT and an increase in p53 expression in neuroblastoma cell lines without TP53 mutation. In addition, S(+)-ibuprofen enhanced the expression of some favorable neuroblastoma genes (EPHB6, CD44) and genes involved in growth suppression and differentiation (EGR1, EPHA2, NRG1 and SEL1L). Gene expression profile and Ingenuity pathway analyses using TP53-mutated SKNAS cells further revealed that S(+)-ibuprofen suppressed molecular pathways associated with cell growth and conversely enhanced those of cell cycle arrest and the unfolded protein response. Collectively, these results suggest that S(+)-ibuprofen or its related compounds may have the potential for therapeutic and/or palliative use for unfavorable neuroblastoma.


Assuntos
Neuroblastoma/genética , Proteínas Nucleares/biossíntese , Proteína Oncogênica v-akt/biossíntese , Proteínas Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteína Supressora de Tumor p53/biossíntese , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Criança , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ibuprofeno/administração & dosagem , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 110(15): 6097-102, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23479628

RESUMO

Cancer stem cells (CSCs) are plastic in nature, a characteristic that hampers cancer therapeutics. Neuroblastoma (NB) is a pediatric tumor of neural crest origin, and half of the cases are highly aggressive. By treating NB cell lines [SKNAS, SKNBE(2)C, CHP134, and SY5Y] with epigenetic modifiers for a short time, followed by sphere-forming culture conditions, we have established stem cell-like NB cells that are phenotypically stable for more than a year. These cells are characterized by their high expression of stemness factors, stem cell markers, and open chromatin structure. We referred to these cells as induced CSCs (iCSCs). SKNAS iCSC and SKNBE(2)C iCSC clones (as few as 100 cells) injected s.c. into SCID/Beige mice formed tumors, and in one case, SKNBE(2)C iCSCs metastasized to the adrenal gland, suggesting their increased metastatic potential. SKNAS iCSC xenografts showed the histologic appearance of totally undifferentiated large-cell NBs (LCNs), the most aggressive and deadly form of NB in humans. Immunohistochemical analyses showed that SKNAS iCSC xenografts expressed high levels of the stem cell marker CXCR4, whereas the SKNAS monolayer cell xenografts did not. The patterns of CXCR4 and MYC expression in SKNAS iCSC xenografts resembled those in the LCNs. The xenografts established from the NB iCSCs shared two common features: the LCN phenotype and high-level MYC/MYCN expression. These observations suggest both that NB cells with large and vesicular nuclei, representing their open chromatin structure, are indicative of stem cell-like tumor cells and that epigenetic changes may have contributed to the development of these most malignant NB cells.


Assuntos
Linhagem Celular Tumoral , Células-Tronco Neoplásicas/citologia , Neuroblastoma/genética , Animais , Biomarcadores Tumorais/metabolismo , Nucléolo Celular/genética , Núcleo Celular/metabolismo , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Transplante de Neoplasias , Fenótipo
7.
Int J Oncol ; 35(4): 845-50, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19724921

RESUMO

Neuroblastoma is a pediatric solid tumor that exhibits striking clinical bipolarity. Despite extensive efforts to treat unfavorable neuroblastoma, survival rate of children with the disease is among the lowest. Previous studies suggest that EPHA2, a member of the EPH family receptor kinases, can either promote or suppress cancer cell growth depending on cellular contexts. In this study, we investigated the biological significance of EPHA2 in neuroblastoma. It was found that tumorigenic N-type neuroblastoma cell lines expressed low levels of EPHA2, whereas hypo-tumorigenic S-type neuroblastoma cell lines expressed high levels of EPHA2 (p<0.005). Notably, inhibitors of DNA methylation and histone deacetylase enhanced EPHA2 expression in N-type cells, suggesting that EPHA2 is epigenetically silenced in unfavorable neuroblastoma cells. Furthermore, ectopic high-level expression of EPHA2 in N-type neuroblastoma cell lines resulted in significant growth suppression. However, Kaplan-Meier survival analysis showed that high EPHA2 expression was not associated with a good disease outcome of neuroblastoma, indicating that EPHA2 is not a favorable neuroblastoma gene, but a growth suppressive gene for neuroblastoma. Accordingly, EPHA2 expression was markedly augmented in vitro in neuroblastoma cells treated with doxorubicin, which is commonly used for treating unfavorable neuroblastoma. Taken together, EPHA2 is one of the effectors of chemotherapeutic agents (e.g., gene silencing inhibitors and DNA damaging agents). EPHA2 expression may thus serve as a biomarker of drug responsiveness for neuroblastoma during the course of chemotherapy. In addition, pharmaceutical enhancement of EPHA2 by non-cytotoxic agents may offer an effective therapeutic approach in the treatment of children with unfavorable neuroblastoma.


Assuntos
Proliferação de Células , Neuroblastoma/enzimologia , Receptor EphA2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Metilação de DNA , Doxorrubicina/farmacologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genótipo , Humanos , Estimativa de Kaplan-Meier , Estadiamento de Neoplasias , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Fenótipo , Prognóstico , RNA Mensageiro/análise , Receptor EphA2/genética , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/genética
8.
Clin Cancer Res ; 13(20): 6001-9, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17947461

RESUMO

PURPOSE: Neuroblastoma is a childhood cancer that exhibits either a favorable or an unfavorable phenotype. Favorable neuroblastoma genes (EPHB6, EFNB2, EFNB3, NTRK1, and CD44) are genes whose high-level expression predicts favorable neuroblastoma disease outcome. Accordingly, the forced expression of these genes or their reactivation by gene silencing inhibitors in unfavorable neuroblastoma cells results in suppression of tumor growth and metastases. This study was undertaken to design an experimental strategy to identify additional favorable neuroblastoma genes. EXPERIMENTAL DESIGN: Favorable neuroblastoma gene candidates were first identified by gene expression profiling analysis on IMR5 neuroblastoma cells treated with inhibitors of DNA methylation and histone deacetylase against the untreated control cells. Among the candidates, we focused on MIZ-1, which encodes a MYC-interacting zinc-finger protein, because it is known to enhance the expression of growth suppressive genes, such as CDKN1A. RESULTS: High-level MIZ-1 expression was associated with favorable disease outcome of neuroblastoma (P = 0.0048). Forced MIZ-1 expression suppressed in vitro growth of neuroblastoma cell lines. High MIZ-1 expression was correlated with the small-size neuroblastoma xenografts treated with gene silencing inhibitors or a glucocorticoid. In addition, forced MIZ-1 expression enhanced the expression of CD44 and EFNB2 in neuroblastoma cell lines in vitro. Furthermore, MIZ-1 expression was positively correlated with the expression of favorable neuroblastoma genes (EFNB2, EFNB3, EPHB6, and NTRK1) in the human neuroblastoma xenograft therapeutic models. CONCLUSION: MIZ-1 is a new favorable neuroblastoma gene, which may directly or indirectly regulate the expression of other favorable neuroblastoma genes.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/fisiologia , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Glucocorticoides/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/biossíntese , Camundongos , Modelos Biológicos , Transplante de Neoplasias , Resultado do Tratamento , Dedos de Zinco
9.
Cancer Res ; 66(5): 2826-33, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16510605

RESUMO

MYCN amplification strongly predicts adverse outcome of neuroblastoma. However, the significance of MYCN expression in the clinical and biological behavior of neuroblastoma has been unclear. To address this question, we first examined the expression of MYCN in combination with TrkA (a favorable prognostic indicator of neuroblastoma) in 91 primary neuroblastoma by quantitative reverse transcription-PCR and investigated the relationship among patient survival, MYCN, and TrkA expressions. Three subsets of neuroblastoma were defined based on MYCN and TrkA expression. Neuroblastoma expressing the highest level of MYCN but little TrkA were MYCN-amplified cases, which had a 5-year survival of 9.3%. Interestingly, MYCN and TrkA expression showed a linear correlation (r = 0.5664, P < 0.00005) in neuroblastoma lacking MYCN amplification, and the 5-year survival of neuroblastoma patients with low MYCN and low TrkA expressions was 63.7%, whereas those with high expression of both had a 5-year survival of 88.1% (P < 0.00005). This nonlinear distribution of disease outcome relative to MYCN expression in neuroblastoma explains why MYCN expression is not predictive of neuroblastoma disease outcome by dichotomous division of the neuroblastoma cohort. However, high-level MYCN expression is associated with favorable outcome in neuroblastoma lacking MYCN amplification. Furthermore, forced expression of MYCN significantly suppresses growth of neuroblastoma cells lacking MYCN amplification by inducing apoptosis and enhancing favorable neuroblastoma gene expression. Collectively, these data suggest that high-level MYCN expression in neuroblastoma lacking MYCN amplification results in a benign phenotype. Thus, the high MYCN expression confers the opposite biological consequence in neuroblastoma, depending on whether or not MYCN is amplified.


Assuntos
Neuroblastoma/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Oncogênicas/biossíntese , Fatores Etários , Linhagem Celular Tumoral , Estudos de Coortes , Amplificação de Genes , Humanos , Proteína Proto-Oncogênica N-Myc , Estadiamento de Neoplasias , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Prognóstico , Receptor trkA/biossíntese , Receptor trkA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA