Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 195: 106891, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37586618

RESUMO

BACKGROUND: Patients with inflammatory bowel disease (IBD) have a higher risk of developing colitis-associated colorectal cancer (CAC) with poor prognosis. IBD etiology remains undefined but involves environmental factors, genetic predisposition, microbiota imbalance (dysbiosis) and mucosal immune defects. Mesenchymal stromal cell (MSC) injections have shown good efficacy in reducing intestinal inflammation in animal and human studies. However, their effect on tumor growth in CAC and their capacity to restore gut dysbiosis are not clear. METHODS: The outcome of systemic administrations of in vitro expanded human intestinal MSCs (iMSCs) on tumor growth in vivo was evaluated using the AOM/DSS model of CAC in C57BL/6J mice. Innate and adaptive immune responses in blood, mesenteric lymph nodes (MLNs) and colonic tissue were analyzed by flow cytometry. Intestinal microbiota composition was evaluated by 16S rRNA amplicon sequencing. RESULTS: iMSCs significantly inhibited colitis and intestinal tumor development, reducing IL-6 and COX-2 expression, and IL-6/STAT3 and PI3K/Akt signaling. iMSCs decreased colonic immune cell infiltration, and partly restored intestinal monocyte homing and differentiation. iMSC administration increased the numbers of Tregs and IFN-γ+CD8+ T cells in the MLNs while decreasing the IL-4+Th2 response. It also ameliorated intestinal dysbiosis in CAC mice, increasing diversity and Bacillota/Bacteroidota ratio, as well as Akkermansia abundance, while reducing Alistipes and Turicibacter, genera associated with inflammation. CONCLUSION: Administration of iMSCs protects against CAC, ameliorating colitis and partially reverting intestinal dysbiosis, supporting the use of MSCs for the treatment of IBD.


Assuntos
Neoplasias Associadas a Colite , Colite , Doenças Inflamatórias Intestinais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Neoplasias Associadas a Colite/complicações , Neoplasias Associadas a Colite/patologia , Interleucina-6 , Camundongos Endogâmicos C57BL , Disbiose/complicações , Linfócitos T CD8-Positivos , RNA Ribossômico 16S , Fosfatidilinositol 3-Quinases , Colite/patologia , Inflamação , Colo/patologia , Doenças Inflamatórias Intestinais/patologia , Imunidade , Sulfato de Dextrana , Modelos Animais de Doenças
2.
Biomed Pharmacother ; 163: 114760, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119741

RESUMO

BACKGROUND: and Purpose: Colorectal cancer (CRC) is one of the cancers with the highest incidence in which APC gene mutations occur in almost 80% of patients. This mutation leads to ß-catenin aberrant accumulation and an uncontrolled proliferation. Apoptosis evasion, changes in the immune response and microbiota composition are also events that arise in CRC. Tetracyclines are drugs with proven antibiotic and immunomodulatory properties that have shown cytotoxic activity against different tumor cell lines. EXPERIMENTAL APPROACH: The effect of tigecycline was evaluated in vitro in HCT116 cells and in vivo in a colitis-associated colorectal cancer (CAC) murine model. 5-fluorouracil was assayed as positive control in both studies. KEY RESULTS: Tigecycline showed an antiproliferative activity targeting the Wnt/ß-catenin pathway and downregulating STAT3. Moreover, tigecycline induced apoptosis through extrinsic, intrinsic and endoplasmic reticulum pathways converging on an increase of CASP7 levels. Furthermore, tigecycline modulated the immune response in CAC, reducing the cancer-associated inflammation through downregulation of cytokines expression. Additionally, tigecycline favored the cytotoxic activity of cytotoxic T lymphocytes (CTLs), one of the main immune defenses against tumor cells. Lastly, the antibiotic reestablished the gut dysbiosis in CAC mice increasing the abundance of bacterial genera and species, such as Akkermansia and Parabacteroides distasonis, that act as protectors against tumor development. These findings resulted in a reduction of the number of tumors and an amelioration of the tumorigenesis process in CAC. CONCLUSION AND IMPLICATIONS: Tigecycline exerts a beneficial effect against CRC supporting the use of this antibiotic for the treatment of this disease.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Camundongos , Tigeciclina/efeitos adversos , beta Catenina/metabolismo , Neoplasias Colorretais/genética , Carcinogênese , Transformação Celular Neoplásica/metabolismo , Via de Sinalização Wnt , Antineoplásicos/efeitos adversos , Imunidade , Antibacterianos/efeitos adversos , Proliferação de Células
3.
Mol Nutr Food Res ; 65(3): e2000812, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33300660

RESUMO

SCOPE: Capsicum annuum L. cv Senise is a sweet pepper containing health promoting compounds that can be modified by ripening and drying. This study focuses on finding the peppers with the best antioxidant properties, which are evaluated on an experimental model of obesity. METHODS AND RESULTS: Phytochemical profile and antioxidant activity are evaluated on several peppers obtained from the same cultivar at different ripening stages. Red sweet peppers show the highest content in polyphenols, ß-carotene, lycopene, and capsinoids, and demonstrate the best antioxidant activity in vitro. Mice fed a high fat diet are orally treated with an extract from these peppers (Capsicum annuum extract [CAE]) (1, 10, and 25 mg/kg/day). It promotes weight loss and improves plasma markers related to glucose and lipid metabolisms. CAE also ameliorates obesity-associated systemic inflammation reducing the expression of pro-inflammatory cytokines in adipose and hepatic tissues and improving the expression of different markers involved in the gut epithelial barrier function. These effects are associated with a modulation of the intestinal microbiome, which appears altered. CONCLUSIONS: The extract can be considered a new potential approach for the treatment of obesity, complementary to dietary restrictions.


Assuntos
Antioxidantes/farmacologia , Capsicum/química , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/dietoterapia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Carotenoides/análise , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Teste de Tolerância a Glucose , Masculino , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/microbiologia , Extratos Vegetais/química
4.
Mol Nutr Food Res ; 64(13): e2000005, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32415899

RESUMO

SCOPE: Obesity is characterized by a dysfunction in the adipose tissue and an inflammatory subclinical state leading to insulin resistance and increased risk of cardiovascular diseases. It is also associated with intestinal dysbiosis that contributes to inflammation development. Lippia citriodora (LCE) contains high levels of polyphenolpropanoids and has shown promising results in obesity. The aim of this study is to investigate a well-characterized extract of LCE in a model of metabolic syndrome in mice, focusing on its effects on metabolic tissues, endothelial dysfunction, and microbiome. METHODS: Mice are fed a high fat diet (HFD) for six weeks and treated daily with LCE (1, 10, and 25 mg kg-1 ). Glucose and lipid metabolism is investigated. The inflammatory state in the metabolic tissues and the intestinal microbiota composition are characterized, as well as the endothelium-dependent vasodilator response to acetylcholine. RESULTS: LCE reduces fat accumulation and improves plasma glycemic and lipid profiles, as well as the inflammatory process and vascular dysfunction. Moreover, LCE lessens intestinal dysbiosis, as it reduces the Firmicutes/Bacteroidetes ratio and increases Akkermansia abundance in comparison with untreated HFD mice. CONCLUSION: The antiobesity therapeutic properties of LCE are most probably mediated by the synergic effects of its bioactive compounds.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Lippia/química , Obesidade/dietoterapia , Extratos Vegetais/farmacologia , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Disbiose/dietoterapia , Disbiose/microbiologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Microbioma Gastrointestinal/fisiologia , Teste de Tolerância a Glucose , Lipídeos/sangue , Masculino , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/microbiologia , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/microbiologia , Extratos Vegetais/química
5.
Food Res Int ; 127: 108722, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882094

RESUMO

The metabolic syndrome has been associated with an alteration of intestinal microbiota, which can be considered as a target for the management of these patients. Phenolic extracts from Hibiscus sabdariffa have shown beneficial effects on obesity and its related complications. However, their effects on gut microbiota have not been investigated yet. This study evaluates the effects of a chemically characterized polyphenolic extract of H. sabdariffa (HSE) in an experimental model of diet-induced obesity (DIO) in mice. HSE was administered daily by oral gave for 42 days. HSE reduced weight increase in high fat diet (HFD)-fed mice, and improved glucose tolerance, insulin sensitivity and normalized LDL/HDL cholesterol ratio. It also enhanced the inflammatory state in the liver, reducing the expression of different adipokines and proinflammatory mediators, and reinforced gut integrity by increasing the expression of mucins and proteins involved in the maintenance of mucosal barrier. Moreover, HSE had a prebiotic effect, ameliorating the changes in the gut microbiota induced by the HFD. Thus, HSE improved the Firmicutes/Bacteroidetes ratio, which may contribute to the beneficial effects. Consequently, HSE could be considered for the development of a complementary treatment for the metabolic syndrome due to its beneficial properties.


Assuntos
Hibiscus/química , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Prebióticos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA