Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(1): 233-247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37772738

RESUMO

Paclitaxel is one of the most effective anticancer drugs ever developed. Although the most sustainable approach to its production is provided by plant cell cultures, the yield is limited by bottleneck enzymes in the taxane biosynthetic pathway: baccatin-aminophenylpropanoyl-13-O-transferase (BAPT) and 3'-N-debenzoyltaxol N-benzoyltransferase (DBTNBT). With the aim of enhancing paclitaxel production by overcoming this bottleneck, we obtained distinct lines of Taxus baccata in vitro roots, each independently overexpressing either of the two flux-limiting genes, BAPT or DBTNBT, through a Rhizobium rhizogenes A4-mediated transformation. Due to the slow growth rate of the transgenic Taxus roots, they were dedifferentiated to obtain callus lines and establish cell suspensions. The transgenic cells were cultured in a two-stage system and stimulated for taxane production by a dual elicitation treatment with 1 µm coronatine plus 50 mm of randomly methylated-ß-cyclodextrins. A high overexpression of BAPT (59.72-fold higher at 48 h) and DBTNBT (61.93-fold higher at 72 h) genes was observed in the transgenic cell cultures, as well as an improved taxane production. Compared to the wild type line (71.01 mg/L), the DBTNBT line produced more than four times higher amounts of paclitaxel (310 mg/L), while the content of this taxane was almost doubled in the BAPT line (135 mg/L). A transcriptional profiling of taxane biosynthetic genes revealed that GGPPS, TXS and DBAT genes were the most reactive to DBTNBT overexpression and the dual elicitation, their expression increasing gradually and constantly. The same genes exhibited a pattern of isolated peaks of expression in the elicited BAPT-overexpressing line.


Assuntos
Paclitaxel , Taxus , Paclitaxel/metabolismo , Taxus/genética , Taxus/metabolismo , Células Cultivadas , Taxoides/farmacologia , Taxoides/metabolismo
2.
Plants (Basel) ; 12(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514310

RESUMO

Taxus cell cultures are a reliable biotechnological source of the anticancer drug paclitaxel. However, the interplay between taxane production and other metabolic pathways during elicitation remains poorly understood. In this study, we combined untargeted metabolomics and elicited Taxus baccata cell cultures to investigate variations in taxane-associated metabolism under the influence of 1 µM coronatine (COR) and 150 µM salicylic acid (SA). Our results demonstrated pleiotropic effects induced by both COR and SA elicitors, leading to differential changes in cell growth, taxane content, and secondary metabolism. Metabolite annotation revealed significant effects on N-containing compounds, phenylpropanoids, and terpenoids. Multivariate analysis showed that the metabolomic profiles of control and COR-treated samples are closer to each other than to SA-elicited samples at different time points (8, 16, and 24 days). The highest level of paclitaxel content was detected on day 8 under SA elicitation, exhibiting a negative correlation with the biomarkers kauralexin A2 and taxusin. Our study provides valuable insights into the intricate metabolic changes associated with paclitaxel production, aiding its potential optimization through untargeted metabolomics and an evaluation of COR/SA elicitor effects.

3.
Metab Eng ; 77: 174-187, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030607

RESUMO

Efforts to stably over-express recombinant proteins in cyanobacteria are hindered due to cellular proteasome activity that efficiently degrades foreign proteins. Recent work from this lab showed that a variety of exogenous genes from plants, humans, and bacteria can be successfully and stably over-expressed in cyanobacteria, as fusion constructs with the abundant ß-subunit of phycocyanin (the cpcB gene product) in quantities up to 10-15% of the total cell protein. The CpcB*P fusion proteins did not simply accumulate in a soluble free-floating form in the cell but, rather, they assembled as functional (α,ß*P)3CpcG1 heterohexameric light-harvesting phycocyanin antenna discs, where α is the CpcA α-subunit of phycocyanin, ß*P is the CpcB*P fusion protein, the asterisk denoting fusion, and CpcG1 is the 28.9 kDa phycocyanin disc linker polypeptide (Hidalgo Martinez et al., 2022). The present work showed that the CpcA α-subunit of phycocyanin and the CpcG1 28.9 kDa phycocyanin disc linker polypeptide can also successfully serve as leading sequences in functional heterohexameric (α*P,ß)3CpcG1 and (α,ß)3CpcG1*P fusion constructs that permit stable recombinant protein over-expression and accumulation. These were shown to form a residual light-harvesting antenna and to contribute to photosystem-II photochemistry in the cyanobacterial cells. The work suggested that cyanobacterial cells need phycocyanin for light absorption, photosynthesis, and survival and, therefore, may tolerate the presence of heterologous recombinant proteins, when the latter are in a fusion construct configuration with essential cellular proteins, e.g., phycocyanin, thus allowing their substantial and stable accumulation.


Assuntos
Cianobactérias , Ficobilissomas , Humanos , Ficobilissomas/genética , Ficobilissomas/metabolismo , Ficocianina/genética , Ficocianina/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Peptídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Plantas/genética
4.
Antioxidants (Basel) ; 12(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37107262

RESUMO

Elicited cell cultures of Taxus spp. are successfully used as sustainable biotechnological production systems of the anticancer drug paclitaxel, but the effect of the induced metabolomic changes on the synthesis of other bioactive compounds by elicitation has been scarcely studied. In this work, a powerful combinatorial approach based on elicitation and untargeted metabolomics was applied to unravel and characterize the effects of the elicitors 1 µM of coronatine (COR) or 150 µM of salicylic acid (SA) on phenolic biosynthesis in Taxus baccata cell suspensions. Differential effects on cell growth and the phenylpropanoid biosynthetic pathway were observed. Untargeted metabolomics analysis revealed a total of 83 phenolic compounds, mainly flavonoids, phenolic acids, lignans, and stilbenes. The application of multivariate statistics identified the metabolite markers attributed to elicitation over time: up to 34 compounds at 8 days, 41 for 16 days, and 36 after 24 days of culture. The most notable metabolic changes in phenolic metabolism occurred after 8 days of COR and 16 days of SA elicitation. Besides demonstrating the significant and differential impact of elicitation treatments on the metabolic fingerprint of T. baccata cell suspensions, the results indicate that Taxus ssp. biofactories may potentially supply not only taxanes but also valuable phenolic antioxidants, in an efficient optimization of resources.

5.
Front Plant Sci ; 14: 1100228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778697

RESUMO

Paclitaxel (PTX) and its derivatives are diterpene alkaloids widely used as chemotherapeutic agents in the treatment of various types of cancer. Due to the scarcity of PTX in nature, its production in cell cultures and plant organs is a major challenge for plant biotechnology. Although significant advances have been made in this field through the development of metabolic engineering and synthetic biology techniques, production levels remain insufficient to meet the current market demand for these powerful anticancer drugs. A key stumbling block is the difficulty of genetically transforming the gymnosperm Taxus spp. This review focuses on the progress made in improving taxane production through genetic engineering techniques. These include the overexpression of limiting genes in the taxane biosynthetic pathway and transcription factors involved in its regulation in Taxus spp. cell cultures and transformed roots, as well as the development and optimization of transformation techniques. Attempts to produce taxanes in heterologous organisms such as bacteria and yeasts are also described. Although promising results have been reported, the transfer of the entire PTX metabolic route has not been possible to date, and taxane biosynthesis is still restricted to Taxus cells and some endophytic fungi. The development of a synthetic organism other than Taxus cells capable of biotechnologically producing PTX will probably have to wait until the complete elucidation of its metabolic pathway.

6.
Chem Biodivers ; 19(12): e202200745, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36413469

RESUMO

Celery is a vegetable widely consumed as a condiment to prepare diverse dishes around the world. Nevertheless, this plant is susceptible to the attack of several phytopathogens including those of the Fusarium genus which is translated into devastating losses for the production chain. Herein we report on the metabolic changes produced during the celery wilt caused by Fusarium oxysporum which was determined through untargeted 1 H-NMR metabolomics. The changes in the metabolite content of celery were measured at 16, 24, and 32 days post-inoculation using viable conidia obtained from the native F. oxysporum strain FO3. Our results demonstrated that the parasitic activity of the fungus reduced the endogenous levels of free sugars (fructose, galactose, glucose isomers, mannose, Myo-inositol, mannitol, and sucrose) amino acids (alanine, aspartate GABA, glutamate, glutamine, histidine, isoleucine, leucine, methionine, proline, threonine, tyrosine, and valine), nucleosides (adenosine, cytidine, guanosine, and uridine) and organic acids (citric acid, fumaric acid, malic acid, and succinic acid). Interestingly, the levels of tyrosine and tryptophan were triggered as a consequence of F. oxysporum infection. This tendency was correlated with an increase in the levels of chlorogenic acid, apiin, and apigenin derivatives, suggesting their involvement in the chemical defense of celery against fungal colonization. According to principal component analysis (PCA) and Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) methanol was the main differential metabolite and it was considered as a new chemical marker associated with F. oxysporum infection. Our results demonstrate that infected celery plants dramatically reduced their nutritional and nutraceutical contents during Fusarium wilt after 32 days post-inoculation. However, these findings also suggest that the phenylpropanoid pathway is strongly related with the chemical defense of celery against F. oxysporum.


Assuntos
Apium , Fusarium , Verduras/metabolismo , Fusarium/metabolismo , Metaboloma , Tirosina , Doenças das Plantas/microbiologia
7.
Front Plant Sci ; 13: 1001023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119596

RESUMO

Hairy roots are made after the integration of a small set of genes from Agrobacterium rhizogenes in the plant genome. Little is known about how this small set is linked to their hormone profile, which determines development, morphology, and levels of secondary metabolite production. We used C. asiatica hairy root line cultures to determine the putative links between the rol and aux gene expressions with morphological traits, a hormone profile, and centelloside production. The results obtained after 14 and 28 days of culture were processed via multivariate analysis and machine-learning processes such as random forest, supported vector machines, linear discriminant analysis, and neural networks. This allowed us to obtain models capable of discriminating highly productive root lines from their levels of genetic expression (rol and aux genes) or from their hormone profile. In total, 12 hormones were evaluated, resulting in 10 being satisfactorily detected. Within this set of hormones, abscisic acid (ABA) and cytokinin isopentenyl adenosine (IPA) were found to be critical in defining the morphological traits and centelloside content. The results showed that IPA brings more benefits to the biotechnological platform. Additionally, we determined the degree of influence of each of the evaluated genes on the individual hormone profile, finding that aux1 has a significant influence on the IPA profile, while the rol genes are closely linked to the ABA profile. Finally, we effectively verified the gene influence on these two specific hormones through feeding experiments that aimed to reverse the effect on root morphology and centelloside content.

8.
ACS Synth Biol ; 11(3): 1152-1166, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35257571

RESUMO

Overexpression of heterologous proteins from plants, bacteria, and human as fusion constructs in cyanobacteria has been documented in the literature. Typically, the heterologous protein "P" of interest is expressed as a fusion with the abundant CpcB ß-subunit of phycocyanin (PC), which was placed in the leader sequence position. The working hypothesis for such overexpressions is that CpcB*P fusion proteins somehow accumulate in a soluble and stable form in the cytosol of the cyanobacteria, retaining the activity of the trailing heterologous "P" protein of interest. The present work revealed a substantially different and previously unobvious picture, comprising the following properties of the above-mentioned CpcB*P fusion constructs: (i) the CpcB*P proteins assemble as functional (α,ß*P)3CpcG heterohexameric discs, where α is the CpcA α-subunit of PC, ß*P is the CpcB*P fusion protein, the asterisk denotes fusion, and CpcG is the 28.9 kDa PC disc linker polypeptide CpcG1. (ii) The (α,ß*P)3CpcG1 complexes covalently bind one open tetrapyrrole bilin co-factor per α-subunit and two bilins per ß-subunit. (iii) The (α,ß*P)3CpcG1 heterohexameric discs are functionally attached to the Synechocystis allophycocyanin (AP) core cylinders and efficiently transfer excitation energy from the assembled (α,ß*P)3CpcG1 heterohexamer to the PSII reaction center, enhancing the rate of photochemical charge separation and electron transfer activity in this photosystem. (iv) In addition to the human interferon α-2 and tetanus toxin fragment C tested in this work, we have shown that enzymes such as the plant-origin isoprene synthase, ß-phellandrene synthase, geranyl diphosphate synthase, and geranyl linalool synthase are also overexpressed, while retaining their catalytic activity in the respective fusion construct configuration. (v) Folding models for the (α,ß*P)3CpcG1 heterohexameric discs showed the recombinant proteins P to be radially oriented with respect to the (α,ß)3 compact disc. Elucidation of the fusion construct configuration and function will pave the way for the rational design of fusion constructs harboring and overexpressing multiple proteins of scientific and commercial interest.


Assuntos
Ficocianina , Synechocystis , Ficocianina/genética , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synechocystis/metabolismo
9.
ACS Synth Biol ; 10(4): 810-825, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33684287

RESUMO

The living cell possesses extraordinary molecular and biochemical mechanisms by which to recognize and efficiently remove foreign, damaged, or denatured proteins. This essential function has been a barrier to the overexpression of recombinant proteins in most expression systems. A notable exception is the overexpression in E. coli of recombinant proteins, most of which, however, end-up as "inclusion bodies", i.e., cytoplasmic aggregates of proteins that are inaccessible to the cell's proteasome. "Fusion constructs as protein overexpression vectors" proved to be unparalleled in their ability to cause substantial accumulation of recombinant proteins from plants, animals, and bacteria, as soluble proteins in unicellular cyanobacteria. Recombinant protein levels in the range of 10-20% of the total cellular protein can be achieved. The present work investigated this unique property in the context of recombinant protein stability in Synechocystis sp. PCC 6803 by developing and applying an in vivo cellular tobacco etch virus cleavage system with the objective of separating the target heterologous proteins from their fusion leader sequences. The work provides new insights about the overexpression, cellular stability, and exploitation of transgenes with commercial interest, highly expressed in a cyanobacterial biofactory. The results support the notion that eukaryotic plant- and animal-origin recombinant proteins are unstable, when free in the cyanobacterial cytosol but stable when in a fusion configuration with a highly expressed cyanobacterial native or heterologous protein. Included in this analysis are recombinant proteins of the plant isoprenoid biosynthetic pathway (isoprene synthase, ß-phellandrene synthase, geranyl diphosphate synthase), the human interferon protein, as well as prokaryotic proteins (tetanus toxin fragment C and the antibiotic resistance genes kanamycin and chloramphenicol). The future success of synthetic biology approaches with cyanobacteria and other systems would require overexpression of pathway enzymes to attain product volume, and the work reported in this paper sets the foundation for such recombinant pathway enzyme overexpression.


Assuntos
Cianobactérias/metabolismo , Endopeptidases/metabolismo , Proteínas Recombinantes/metabolismo , Cianobactérias/genética , Endopeptidases/genética , Proteínas Recombinantes/genética , Synechocystis/genética , Synechocystis/metabolismo
10.
Planta ; 251(4): 92, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32242247

RESUMO

MAIN CONCLUSION: The role of six alkaloid biosynthesis genes in the process of nicotine accumulation in tobacco was investigated. Downregulation of ornithine decarboxylase, arginine decarboxylase, and aspartate oxidase resulted in viable plants with a significantly lower nicotine content. Attenuation of nicotine accumulation in Nicotiana tabacum was addressed upon the application of RNAi technologies. The approach entailed a downregulation in the expression of six different alkaloid biosynthesis genes encoding upstream enzymes that are thought to function in the pathway of alkaloid and nicotine biosynthesis. Nine different RNAi constructs were designed to lower the expression level of the genes that encode the enzymes arginine decarboxylase, agmatine deiminase, aspartate oxidase, arginase, ornithine decarboxylase, and SAM synthase. Agrobacterium-based transformation of tobacco leaves was applied, and upon kanamycin selection, T0 and subsequently T1 generation seeds were produced. Mature T1 plants in the greenhouse were topped to prevent flowering and leaf nos. 3 and 4 below the topping point were tested for transcript levels and product accumulation. Down-regulation in arginine decarboxylase, aspartate oxidase, and ornithine decarboxylase consistently resulted in lower levels of nicotine in the leaves of the corresponding plants. Transformants with the aspartate oxidase RNAi construct showed the lowest nicotine level in the leaves, which varied from below the limit of quantification (20 µg per g dry leaf weight) to 1.3 mg per g dry leaf weight. The amount of putrescine, the main polyamine related to nicotine biosynthesis, showed a qualitative correlation with the nicotine content in the arginine decarboxylase and ornithine decarboxylase RNAi-expressing transformants. A putative early senescence phenotype and lower viability of the older leaves was observed in some of the transformant lines. The results are discussed in terms of the role of the above-mentioned genes in the alkaloid biosynthetic pathway and may serve to guide efforts to attenuate nicotine content in tobacco leaves.


Assuntos
Alcaloides/biossíntese , Alcaloides/genética , Nicotiana/genética , Nicotina/biossíntese , Nicotina/genética , Aminoácido Oxirredutases/genética , Vias Biossintéticas/genética , Carboxiliases/genética , Regulação da Expressão Gênica de Plantas , Ornitina Descarboxilase/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Poliaminas/metabolismo , Putrescina/metabolismo , Sementes
11.
Phytochem Anal ; 31(4): 480-487, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31908083

RESUMO

INTRODUCTION: Nicotiana tabacum is a plant model intensively used in the bio-engineering pharmaceutical industry as a platform to produce drugs and therapeutic agents. Currently, no information regarding the non-targeted metabolome of transgenic tobacco containing recombinant regulatory sequences is available. OBJECTIVE: To compare the proton nuclear magnetic resonance (1 H-NMR) metabolomics profiling of a recombinant Nicotiana tabacum strain containing a promoter of a sesquiterpene cyclase from Capsicum annuum driving GUS expression, versus wild-type samples. Methodology The non-targeted 1 H-NMR metabolome was obtained and processed by principal component analysis (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA). The differential metabolites were quantified by quantitative NMR. RESULTS: PCA and OPLS-DA revealed 37 metabolites including 16 discriminant compounds for transgenic samples. Ethanol (0.4 mg g-1 ), the main differential compound, was exclusively detected in transgenic tobacco; however, high levels of formate (0.28 mg g-1 ) and acetate (0.3 mg g-1 ) were simultaneously observed in the same group of samples. Cembratriene-4,6-diol, an antitumour and neuroprotective compound, and capsidiol, a known phytoalexin, increased by about 30% in transgenic samples. In addition, the endogenous levels of the antioxidant caffeoylquinic acid isomers increased by 50% in comparison to those of wild-type tobaccos. CONCLUSION: Our results support the occurrence of metabolic differences between wild type and transgenic tobacco containing a promoter of a Capsicum sesquiterpene cyclase gene. Interestingly, the recombinant transgenic strain studied accumulated high amounts of added value compounds with biological activity.


Assuntos
Metabolômica , Nicotiana , Carbono-Carbono Liases , Espectroscopia de Ressonância Magnética
12.
Food Res Int ; 121: 12-19, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108732

RESUMO

Approximately 90% of the chili peppers consumed in the world are harvested in Mexico. The present article describes the untargeted 1H NMR-based metabolomic profiling of 11 cultivars of Capsicum annuum species which are routinely consumed worldwide. The metabolomic fingerprinting detected via 1H NMR contained 44 metabolites including sugars, amino acids, organic acids, polyphenolic acids and alcohols which were identified by comparison with the literature data, with Chenomx database and by 2D NMR. Statistical approaches based on principal component analysis (PCA) and linear discriminant analysis (LDA) were used to classify the Capsicum annuum cultivars according to their metabolite profile. LDA revealed metabolomic differences and similarities among Capsicum annuum cultivars, whereas hierarchical cluster analysis (HCA) significantly separated the cultivars according to the phylogenetic trees obtained. Substantial endogenous levels of free amino acids and carbohydrates were detected in all the studied cultivars but interestingly, Capsicum annuum cv. mirasol and C. annuum cv. chilaca contained almost three-fold more endogenous levels of vitamin C than the other cultivars. Considering that this antioxidant was found in crude aqueous extracts, its abundance could be directly proportional to its bioavailability for human nutrition. The results suggest that 1H NMR is an effective method to determine differences among cultivars of the Capsicum annuum species.


Assuntos
Capsicum/química , Capsicum/metabolismo , Metaboloma/fisiologia , Aminoácidos/análise , Ácidos Carboxílicos/análise , Análise Discriminante , Metabolômica , México , Ressonância Magnética Nuclear Biomolecular , Análise de Componente Principal , Açúcares/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA