Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36551893

RESUMO

Engineered magnetic nanoparticles (MNPs) are emerging as advanced tools for medical applications. The coating of MNPs using polyelectrolytes (PEs) is a versatile means to tailor MNP properties and is used to optimize MNP functionality. Dendritic cells (DCs) are critical regulators of adaptive immune responses. Functionally distinct DC subsets exist, either under steady-state or inflammatory conditions, which are explored for the specific treatment of various diseases, such as cancer, autoimmunity, and transplant rejection. Here, the impact of the PE coating of ferumoxytol for uptake into both inflammatory and steady-state DCs and the cellular responses to MNP labeling is addressed. Labeling efficiency by uncoated and PE-coated ferumoxytol is highly variable in different DC subsets, and PE coating significantly improves the labeling of steady-state DCs. Uncoated ferumoxytol results in increased cytotoxicity of steady-state DCs after labeling, which is abolished by the PE coating, while no increased cell death is observed in inflammatory DCs. Furthermore, uncoated and PE-coated ferumoxytol appear immunologically inert in inflammatory DCs, but they induce activation of steady-state DCs. These results show that the PE coating of MNPs can be applied to endow particles with desired properties for enhanced uptake and cell type-specific responses in distinct target DC populations.

2.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34526403

RESUMO

The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface-expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ). Mice with a CD11c-specific deletion of ADAM10 (ADAM10ΔCD11c) exhibited a complete loss of splenic ESAMhi cDC2A because ADAM10 regulated the commitment, differentiation, and survival of these cells. The major pathways controlled by ADAM10 in ESAMhi cDC2A are Notch, signaling pathways involved in cell proliferation and survival (e.g., mTOR, PI3K/AKT, and EIF2 signaling), and EBI2-mediated localization within the MZ. In addition, we discovered that ADAM10 is a molecular switch regulating cDC2 subset heterogeneity in the spleen, as the disappearance of ESAMhi cDC2A in ADAM10ΔCD11c mice was compensated for by the emergence of a Clec12a+ cDC2B subset closely resembling cDC2 generally found in peripheral lymph nodes. Moreover, in ADAM10ΔCD11c mice, terminal differentiation of cDC1 was abrogated, resulting in severely reduced splenic Langerin+ cDC1 numbers. Next to the disturbed splenic cDC compartment, ADAM10 deficiency on CD11c+ cells led to an increase in marginal metallophilic macrophage (MMM) numbers. In conclusion, our data identify ADAM10 as a molecular hub on both cDC and MMM regulating their transcriptional programming, turnover, homeostasis, and ability to shape the anatomical niche of the MZ.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Células Dendríticas/metabolismo , Proteínas de Membrana/metabolismo , Proteína ADAM10/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Antígeno CD11c/metabolismo , Diferenciação Celular , Proliferação de Células , Feminino , Homeostase , Tecido Linfoide/metabolismo , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais , Baço/citologia , Baço/metabolismo
3.
Oxid Med Cell Longev ; 2018: 6957497, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538805

RESUMO

Nonalcoholic steatohepatitis (NASH) is the most common chronic, progressive liver disease in Western countries. The significance of cellular interactions of the HGF/c-Met axis in different liver cell subtypes and its relation to the oxidative stress response remains unclear so far. Hence, the present study is aimed at investigating the role of c-Met and the interaction with the oxidative stress response during NASH development in mice and humans. Conditional c-Met knockout (KO) lines (LysCre for Kupffer cells/macrophages, GFAPCre for α-SMA+ and CK19+ cells and MxCre for bone marrow-derived immune cells) were fed chow and either methionine-choline-deficient diet (MCD) for 4 weeks or high-fat diet (HFD) for 24 weeks. Mice lacking c-Met either in Kupffer cells, α-SMA+ and CK19+ cells, or bone marrow-derived immune cells displayed earlier and faster progressing steatohepatitis during dietary treatments. Severe fatty liver degeneration and histomorphological changes were accompanied by an increased infiltration of immune cells and a significant upregulation of inflammatory cytokine expression reflecting an earlier initiation of steatohepatitis development. In addition, animals with a cell-type-specific deletion of c-Met exhibited a strong generation of reactive oxygen species (ROS) by dihydroethidium (hydroethidine) (DHE) staining showing a significant increase in the oxidative stress response especially in LysCre/c-Metmut and MxCre/c-Metmut animals. All these changes finally lead to earlier and stronger fibrosis progression with strong accumulation of collagen within liver tissue of mice deficient for c-Met in different liver cell types. The HGF/c-Met signaling pathway prevents from steatosis development and has a protective function in the progression to steatohepatitis and fibrosis. It conveys an antifibrotic role independent on which cell type c-Met is missing (Kupffer cells/macrophages, α-SMA+ and CK19+ cells, or bone marrow-derived immune cells). These results highlight a global protective capacity of c-Met in NASH development and progression.


Assuntos
Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Progressão da Doença , Técnicas de Inativação de Genes , Hepatócitos/metabolismo , Humanos , Células de Kupffer/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/fisiologia
4.
Front Immunol ; 9: 517, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616031

RESUMO

Langerhans cells (LCs), the epidermal dendritic cell (DC) subset, express the transmembrane tyrosine kinase receptor Met also known as hepatocyte growth factor (HGF) receptor. HGF is the exclusive ligand of Met and upon binding executes mitogenic, morphogenic, and motogenic activities to various cells. HGF exerts anti-inflammatory activities via Met signaling and was found to regulate various functions of immune cells, including differentiation and maturation, cytokine production, cellular migration and adhesion, and T cell effector function. It has only recently become evident that a number of HGF-regulated functions in inflammatory processes and immune responses are imparted via DCs. However, the mechanisms by which Met signaling in DCs conveys its immunoregulatory effects have not yet been fully understood. In this review, we focus on the current knowledge of Met signaling in DCs with particular attention on the morphogenic and motogenic activities. Met signaling was shown to promote DC mobility by regulating matrix metalloproteinase activities and adhesion. This is a striking resemblance to the role of Met in regulating a cell fate program during embryonic development, wound healing, and in tumor invasion known as epithelial-mesenchymal transition (EMT). Hence, we propose the concept that an EMT program is executed by Met signaling in LCs.


Assuntos
Células de Langerhans/fisiologia , Proteínas Proto-Oncogênicas c-met/fisiologia , Pele/imunologia , Animais , Movimento Celular , Transição Epitelial-Mesenquimal , Fator de Crescimento de Hepatócito/fisiologia , Humanos , Pele/lesões , Pele/metabolismo
5.
Biomedicines ; 3(1): 138-148, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28536404

RESUMO

Hepatocyte growth factor (HGF)-signaling via Met can induce mitogenic, morphogenic, and motogenic activity in various cell types. Met expression in the immune system is limited to cells with antigen-presenting capacities, including dendritic cells (DCs). Thus, it appears highly conceivable that Met-signaling impacts on adaptive immune responses. However, the mechanisms by which HGF imparts its effects on immunological responses are not yet fully understood. DCs possess unique functionalities that are critically involved in controlling both tolerance and immunity. HGF conveys immunoregulatory functions, which strongly correlate with that of DCs orchestrating the apt immune response in inflammation. Therefore, this review focuses on the current knowledge of Met-signaling in DCs with specific emphasis on the morphogenic and motogenic activities. HGF has been identified to play a role in peripheral immune tolerance by directing DC differentiation towards a tolerogenic phenotype. In skin immunity, Met-signaling was shown to drive mobilization of DCs by regulating matrix metalloproteinase activities. This is strikingly reminiscent of the role of Met for regulating a cell fate program during embryonic development, wound healing, and in tumor invasion known as epithelial-mesenchymal transition (EMT). Thus, the concept emerges that an EMT program is executed by Met-signaling in DCs, which will be also discussed.

6.
Semin Cell Dev Biol ; 41: 30-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24613914

RESUMO

Langerhans cells (LC), the skin epidermal contingent of dendritic cells (DC), possess an exceptional life cycle and developmental origin. LC, like all mature blood cells, develop from haematopoietic stem cells (HSC) through successive steps of lineage commitment and differentiation. However, LC development is different to that of other DC subsets and not yet fully understood. Haematopoietic cell fate decisions are instructed by specific growth factors and cytokines produced in specialized microenvironments or niches. Upon ligand binding the cognate surface receptors on HSC and further restricted progenitor cells regulate the signalling pathways that eventually leads to the execution of lineage-determining genetic programs. In this review we focus on a specific set of surface receptor kinases that have been identified as critical regulators of LC development using genetically modified mice. Recent studies suggest for some of these kinases to impact on LC/LC progenitor interaction with the local niche by regulating adhesion and/or migration. During embryonic development, in wound healing and aberrantly in tumour invasion the same kinase receptors control a genetic program known as epithelial-to-mesenchymal-transition (EMT). We will discuss how EMT and its reverse program of mesenchymal-to-epithelial-transition (MET) can serve as universal concepts operating also in LC development.


Assuntos
Movimento Celular/imunologia , Homeostase/imunologia , Células de Langerhans/imunologia , Pele/imunologia , Adesão Celular/imunologia , Diferenciação Celular/imunologia , Transição Epitelial-Mesenquimal/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células de Langerhans/metabolismo , Receptores Proteína Tirosina Quinases/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Pele/citologia , Pele/metabolismo
7.
Tissue Eng Part C Methods ; 19(1): 25-38, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22712684

RESUMO

Currently, ex vivo expansion of hematopoietic stem cells (HSC) is still insufficient. Traditional approaches for HSC expansion include the use of stromal cultures, growth factors, and/or bioreactors. Biomaterial-based strategies provide new perspectives. We focus on identifying promising two-dimensional (2D) polymer candidates for HSC expansion. After a 7-day culture period with cytokine supplementation, 2D fibrin, poly(D,L-lactic-co-glycolic acid; Resomer® RG503), and Poly(ɛ-caprolactone; PCL) substrates supported expansion of cord blood (CB)-derived CD34⁺ cells ex vivo. Fibrin cultures achieved the highest proliferation rates (>8700-fold increase of total nuclear cells, p<0.001), high total colony-forming units (3.6-fold increase, p<0.001), and highest engraftment in NSG mice (7.69-fold more donor cells compared with tissue culture polysterene, p<0.001). In addition, the presence of multiple human hematopoietic lineages such as myeloid (CD13⁺), erythroid (GypC⁺), and lymphoid (CD20⁺/CD56⁺) in murine transplant recipients confirmed the multilineage engraftment potential of fibrin-based cultures. Filopodia development in fibrin-expanded cells was a further indicator for superior cell adhesion capacities. We propose application of fibrin, Resomer® RG503, and PCL for future strategies of CB-CD34⁺ cell expansion. Suitable polymers for HSC expansion might also be appropriate for future drug discovery applications or for studies aimed to develop hematological therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Sangue Fetal/citologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Polímeros/farmacologia , Animais , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular , Sobrevivência Celular , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/ultraestrutura , Humanos , Imuno-Histoquímica , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Especificidade de Órgãos/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco
8.
J Tissue Eng Regen Med ; 7(12): 944-54, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22653714

RESUMO

Cord blood-derived haematopoietic stem cells (CB-HSCs) are an attractive source for transplantation in haematopoietic disorders. However, the yield of CB-HSCs per graft is limited and often insufficient, particularly for the treatment of adult patients. Here we compare the capacity of three cytokine cocktails to expand CB-CD34(+) cells. Cells were cultured for 5 or 14 days in media supplemented with: (a) SCF, FL, IL-3 and IL-6 (SFLIL3/6); (b) SCF, TPO, FGF-1 and IL-6 (STFIL6); and (c) SCF, TPO, FGF-1, IGFBP2 and Angptl-5 (STFAI). We observed that STFAI-culture expansion sustained the most vigorous cell proliferation, maintenance of CD34(+) phenotype and colony-forming unit counts. In addition, STFAI-cultured cells had a potent ex vivo migration activity. STFAI-expanded cells were able to engraft NSG mice. However, no significant difference in overall engraftment was observed among the expansion cocktails. Assessment of short-term reconstitution using multilineage markers demonstrated that the STFAI cocktail for HSCs expansion greatly improved total cell expansion but may impair short-term lymphoid repopulation.


Assuntos
Angiopoietinas/farmacologia , Antígenos CD34/metabolismo , Sangue Fetal/citologia , Sangue Fetal/efeitos dos fármacos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Linfócitos/citologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Clonais , Ensaio de Unidades Formadoras de Colônias , Citocinas/farmacologia , Sangue Fetal/metabolismo , Humanos , Antígenos Comuns de Leucócito/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Baço/citologia , Fator de Células-Tronco/farmacologia , Trombopoetina/farmacologia
9.
Immunity ; 37(5): 905-16, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23159228

RESUMO

Langerhans cells (LCs), the dendritic cells (DCs) in skin epidermis, possess an exceptional life cycle and developmental origin. Here we identified two types of LCs, short-term and long-term LCs, which transiently or stably reconstitute the LC compartment, respectively. Short-term LCs developed from Gr-1(hi) monocytes under inflammatory conditions and occurred independently of the transcription factor Id2. Long-term LCs arose from bone marrow in steady state and were critically dependent on Id2. Surface marker and gene expression analysis positioned short-term LCs close to Gr-1(hi) monocytes, which is indicative of their monocytic origin. We also show that LC reconstitution after UV light exposure occurs in two waves: an initial fast and transient wave of Gr-1(hi) monocyte-derived short-term LCs is followed by a second wave of steady-state precursor-derived long-term LCs. Our data demonstrate the presence of two types of LCs that develop through different pathways in inflammation and steady state.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Células de Langerhans/metabolismo , Células de Langerhans/patologia , Pele/citologia , Pele/metabolismo , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Medula Óssea/imunologia , Medula Óssea/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Epidérmicas , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/patologia , Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/imunologia , Proteína 2 Inibidora de Diferenciação/metabolismo , Células de Langerhans/imunologia , Camundongos , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Pele/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Raios Ultravioleta
10.
Nanotechnology ; 23(35): 355707, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22894914

RESUMO

This work deals with the production and characterization of water-compatible, iron oxide based nanoparticles covered with functional poly(ethylene glycol) (PEG)-biotin surface groups (SPIO-PEG-biotin). Synthesis of the functionalized colloids occurred by incubating the oleate coated particles used as precursor magnetic fluid with anionic liposomes containing 14 mol% of a phospholipid-PEG-biotin conjugate. The latter was prepared by coupling dimyristoylphosphatidylethanolamine (DC(14:0)PE) to activated α-biotinylamido-ω -N-hydroxy-succinimidcarbonyl-PEG (NHS-PEG-biotin). Physical characterization of the oleate and PEG-biotin iron oxide nanocolloids revealed that they appear as colloidal stable clusters with a hydrodynamic diameter of 160 nm and zeta potentials of - 39 mV (oleate coated particles) and - 14 mV (PEG-biotin covered particles), respectively, as measured by light scattering techniques. Superconducting quantum interference device (SQUID) measurements revealed specific saturation magnetizations of 62-73 emu g(-1) Fe(3)O(4) and no hysteresis was observed at 300 K. MR relaxometry at 3 T revealed very high r(2) relaxivities and moderately high r(1) values. Thus, both nanocolloids can be classified as small, superparamagnetic, negative MR contrast agents. The capacity to functionalize the particles was illustrated by binding streptavidin alkaline phosphatase (SAP). It was found, however, that these complexes become highly aggregated after capturing them on the magnetic filter device during high-gradient magnetophoresis, thereby reducing the accessibility of the SAP.


Assuntos
Fosfatase Alcalina/química , Biotina/química , Nanopartículas de Magnetita/química , Estreptavidina/química , Fosfatase Alcalina/metabolismo , Glicerofosfolipídeos/química , Ácido Oleico/química , Tamanho da Partícula , Polietilenoglicóis/química , Ligação Proteica
11.
J Immunol ; 189(4): 1699-707, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22802413

RESUMO

The Met tyrosine kinase has a pivotal role in embryonic development and tissue regeneration, and deregulated Met signaling contributes to tumorigenesis. After binding of its cognate ligand hepatocyte growth factor, Met signaling confers mitogenic, morphogenic, and motogenic activity to various cells. Met expression in the hematopoietic compartment is limited to progenitor cells and their Ag-presenting progeny, including dendritic cells (DCs). In this study, we demonstrate that Met signaling in skin-resident DCs is essential for their emigration toward draining lymph nodes upon inflammation-induced activation. By using a conditional Met-deficient mouse model (Met(flox/flox)), we show that Met acts on the initial step of DC release from skin tissue. Met-deficient DCs fail to reach skin-draining lymph nodes upon activation while exhibiting an activated phenotype. Contact hypersensitivity reactions in response to various contact allergens is strongly impaired in Met-deficient mice. Inhibition of Met signaling by single-dose epicutaneous administration of the Met kinase-specific inhibitor SU11274 also suppressed contact hypersensitivity in wild-type mice. Additionally, we found that Met signaling regulates matrix metalloproteinase MMP2 and MMP9 activity, which is important for DC migration through extracellular matrix. These data unveil Met signaling in DCs as a critical determinant for the maintenance of normal immune function and suggest Met as a potential target for treatment of autoimmune skin diseases.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Pele/imunologia , Animais , Células Dendríticas/enzimologia , Citometria de Fluxo , Immunoblotting , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Proteínas Proto-Oncogênicas c-met/deficiência , Proteínas Proto-Oncogênicas c-met/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Pele/citologia
12.
Biomaterials ; 33(29): 6987-97, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22800538

RESUMO

Expansion of multipotent, undifferentiated and proliferating cord blood (CB)-hematopoietic stem cells (HSC) in vitro is limited and insufficient. Bone marrow (BM) engineering in vitro allows mimicking the main components of the hematopoietic niche compared to conventional expansion strategies. In this study, four different 3D biomaterial scaffolds (PCL, PLGA, fibrin and collagen) were tested for freshly isolated cord blood (CB)-CD34(+) cell expansion in presence of (i) efficient exogenous cytokine supplementation and (ii) umbilical cord (UC)-mesenchymal stem cells (MSC). Cell morphology, growth and proliferation were analyzed in vitro as well as multi-organ engraftment and multilineage differentiation in a murine transplantation model. All scaffolds, except 3D PLGA meshes, supported CB-CD34(+) cell expansion, which was additionally stimulated by UC-MSC support. CB-CD34(+) cells cultured on human-derived 3D fibrin scaffolds with UC-MSC support i) reached the highest overall growth (5 × 10(8)-fold expansion of total nuclear cells after fourteen days and 3 × 10(7)-fold expansion of CD34(+) cells after seven days, p < 0.001), ii) maintained a more primitive immunophenotype for more cell divisions, iii) exhibited superior morphological, migratory and adhesive properties, and iv) showed the significantly highest numbers of engraftment and multilineage differentiation (CD45, CD34, CD13, CD3 and CD19) in BM, spleen and peripheral blood in long-term transplanted NSG mice compared to the other 3D biomaterial scaffolds. Thus, the 3D fibrin scaffold based BM-mimicry strategy reveals optimal requirements for translation into clinical protocols for CB expansion and transplantation.


Assuntos
Sangue Fetal/citologia , Fibrina/química , Células-Tronco Hematopoéticas/citologia , Alicerces Teciduais/química , Animais , Antígenos CD34/biossíntese , Materiais Biocompatíveis , Células da Medula Óssea/citologia , Proliferação de Células , Transplante de Células/métodos , Células Cultivadas/citologia , Citocinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia Eletrônica de Varredura/métodos , Fenótipo , Engenharia Tecidual/métodos , Cordão Umbilical/citologia
13.
Arterioscler Thromb Vasc Biol ; 32(7): 1613-23, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22556330

RESUMO

OBJECTIVE: Inflammatory leukocyte accumulation drives atherosclerosis. Although monocytes/macrophages and polymorphonuclear neutrophilic leukocytes (PMN) contribute to lesion formation, sequelae of myeloproliferative disease remain to be elucidated. METHODS AND RESULTS: We used mice deficient in interferon regulatory factor 8 (IRF8(-/-)) in hematopoietic cells that develop a chronic myelogenous leukemia-like phenotype. Apolipoprotein E-deficient mice reconstituted with IRF8(-/-) or IRF8(-/-) apolipoprotein E-deficient bone marrow displayed an exacerbated atherosclerotic lesion formation compared with controls. The chronic myelogenous leukemia-like phenotype in mice with IRF8(-/-) bone marrow, reflected by an expansion of PMN in the circulation, was associated with an increased lesional accumulation and apoptosis of PMN, and enlarged necrotic cores. IRF8(-/-) compared with IRF8(+/+) PMN displayed unaffected reactive oxygen species formation and discharge of PMN granule components. In contrast, accumulating in equal numbers at sites of inflammation, IRF8(-/-) macrophages were defective in efferocytosis, lipid uptake, and interleukin-10 cytokine production. Importantly, depletion of PMN in low-density lipoprotein receptor or apolipoprotein E-deficient mice with IRF8(-/-) or IRF8(-/-) apolipoprotein E-deficient bone marrow abrogated increased lesion formation. CONCLUSIONS: These findings indicate that a chronic myelogenous leukemia-like phenotype contributes to accelerated atherosclerosis in mice. Among proatherosclerotic effects of other cell types, this, in part, is linked to an expansion of functionally intact PMN.


Assuntos
Aterosclerose/etiologia , Fatores Reguladores de Interferon/fisiologia , Animais , Apolipoproteínas E/fisiologia , Apoptose , Transplante de Medula Óssea , Permeabilidade Capilar , Feminino , Interleucina-10/biossíntese , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Peroxidase/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/fisiologia
14.
Nanomedicine ; 8(5): 682-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21893141

RESUMO

Iron oxide-based magnetic nanoparticles (MNPs) offer unique properties for cell tracking by magnetic resonance imaging (MRI) in cellular immunotherapy. In this study, we investigated the uptake of chemically engineered NPs into antigen-presenting dendritic cells (DCs). DCs are expected to perceive MNPs as foreign antigens, thus exhibiting the capability to immunologically sense MNP surface chemistry. To systematically evaluate cellular uptake and T2/T2(⁎) MR imaging properties of MNPs, we synthesized polymer-based MNPs by employing layer-by-layer (LbL) technology. Thereby, we achieved modification of particle shell parameters, such as size, surface charge, and chemistry. We found that subcellular packaging of MNPs rather than MNP content in DCs influences MR imaging quality. Increased local intracellular electron density as inferred from transmission electron microscopy (TEM) strongly correlated with enhanced contrast in MRI. Thus, LbL-tailoring of MNP shells using polyelectrolytes that impact on uptake and subcellular localization can be used for modulating MR imaging properties. FROM THE CLINICAL EDITOR: In this study, layer-by-layer tailoring of magnetic NP shells was performed using polyelectrolytes to improve uptake by dendritic cells for cell-specific MR imaging. The authors conclude that polyelectrolyte modified NP-s can be used for modulating improving MR imaging quality by increasing subcellular localization.


Assuntos
Células Dendríticas/citologia , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Animais , Sobrevivência Celular/efeitos dos fármacos , Rastreamento de Células , Células Cultivadas , Células-Tronco Hematopoéticas/citologia , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Camundongos , Microscopia Eletrônica de Transmissão , Coloração e Rotulagem
15.
J Mater Sci Mater Med ; 23(1): 109-16, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22071984

RESUMO

The low yield of hematopoietic progenitor cells (HPC) present in cord blood grafts limits their application in clinics. A reliable strategy for ex vivo expansion of functional HPC is a present goal in regenerative medicine. Here we evaluate the capacity of several two-dimensional polymers to support HPC proliferation. Basic compatibility was tested by measuring cell viability, cytotoxicity and apoptosis of CD34(+) progenitors that were short and long-term exposed to sixteen bio and synthetic polymers. Resomer(®) RG503, PCL and Fibrin might be good alternatives to tissue culture plastic for culture of CB-derived CD34(+) progenitors. Further, these polymers will be produced in three-dimensional structures and tested for their cytocompatibility.


Assuntos
Materiais Biocompatíveis , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Polímeros/química , Antígenos CD34/imunologia , Apoptose , Proliferação de Células , Sangue Fetal/imunologia , Células-Tronco Hematopoéticas/imunologia , Humanos
16.
Eur J Cell Biol ; 91(6-7): 515-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22078373

RESUMO

Dendritic cells (DC) develop from hematopoietic stem cells, which is guided by instructive signals through cytokines. DC development progresses from multipotent progenitors (MPP) via common DC progenitors (CDP) into DC. Flt3 ligand (Flt3L) signaling via the Flt3/Stat3 pathway is of pivotal importance for DC development under steady state conditions. Additional factors produced during steady state or inflammation, such as TGF-ß1 or GM-CSF, also influence the differentiation potential of MPP and CDP. Here, we studied how gp130, GM-CSF and TGF-ß1 signaling influence DC lineage commitment from MPP to CDP and further into DC. We observed that activation of gp130 signaling promotes expansion of MPP. Additionally, gp130 signaling inhibited Flt3L-driven DC differentiation, but had little effect on GM-CSF-driven DC development. The inflammatory cytokine GM-CSF induces differentiation of MPP into inflammatory DC and blocks steady state DC development. Global transcriptome analysis revealed a GM-CSF-driven gene expression repertoire that primes MPP for differentiation into inflammatory DC. Finally, TGF-ß1 induces expression of DC-lineage affiliated genes in MPP, including Flt3, Irf-4 and Irf-8. Under inflammatory conditions, however, the effect of TGF-ß1 is altered: Flt3 is not upregulated, indicating that an inflammatory environment inhibits steady state DC development. Altogether, our data indicate that distinct cytokine signals produced during steady state or inflammation have a different outcome on DC lineage commitment and differentiation.


Assuntos
Citocinas/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Hematopoese/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Citocinas/metabolismo , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Camundongos , Camundongos Endogâmicos C57BL
17.
J Clin Invest ; 121(7): 2898-910, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21633167

RESUMO

Immune mechanisms are known to control the pathogenesis of atherosclerosis. However, the exact role of DCs, which are essential for priming of immune responses, remains elusive. We have shown here that the DC-derived chemokine CCL17 is present in advanced human and mouse atherosclerosis and that CCL17+ DCs accumulate in atherosclerotic lesions. In atherosclerosis-prone mice, Ccl17 deficiency entailed a reduction of atherosclerosis, which was dependent on Tregs. Expression of CCL17 by DCs limited the expansion of Tregs by restricting their maintenance and precipitated atherosclerosis in a mechanism conferred by T cells. Conversely, a blocking antibody specific for CCL17 expanded Tregs and reduced atheroprogression. Our data identify DC-derived CCL17 as a central regulator of Treg homeostasis, implicate DCs and their effector functions in atherogenesis, and suggest that CCL17 might be a target for vascular therapy.


Assuntos
Aterosclerose/imunologia , Quimiocina CCL17/imunologia , Células Dendríticas/imunologia , Homeostase , Linfócitos T Reguladores/imunologia , Animais , Transplante de Medula Óssea , Movimento Celular , Quimiocina CCL17/genética , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Subpopulações de Linfócitos T/metabolismo
18.
Exp Hematol ; 39(6): 617-28, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21356269

RESUMO

OBJECTIVE: The number of hematopoietic stem and progenitor cells (HPCs) per cord blood unit is limited, and this can result in delayed engraftment or graft failure. In vitro expansion of HPCs provides a perspective to overcome these limitations. Cytokines as well as mesenchymal stromal cells (MSCs) have been shown to support HPCs ex vivo expansion, but a systematic analysis of their interplay remains elusive. MATERIALS AND METHODS: Twenty different combinations of growth factors (stem cell factor [SCF], thrombopoietin [TPO], fibroblast growth factor-1 [FGF-1], angiopoietin-like 5, and insulin-like growth factor-binding protein 2), either with or without MSC coculture were systematically compared for their ability to support HPC expansion. CD34(+) cells were stained with carboxyfluorescein diacetate N-succinimidyl ester to monitor cell division history in conjunction with immunophenotype. Colony-forming unit frequencies and hematopoietic reconstitution of nonobese diabetic severe combined immunodeficient mice were also assessed. RESULTS: Proliferation of HPCs was stimulated by coculture with MSCs. This was further enhanced in combination with SCF, TPO, and FGF-1. Moreover, these conditions maintained expression of primitive surface markers for more than four cell divisions. Colony-forming unit-initiating cells were not expanded without stromal support, whereas an eightfold increase was reached by simultaneous cytokine-treatment and MSC coculture. Importantly, in comparison to expansion without stromal support, coculture with MSCs significantly enhanced hematopoietic chimerism in a murine transplantation model. CONCLUSIONS: The supportive effect of MSCs on hematopoiesis can be significantly increased by addition of specific recombinant growth factors; especially in combination with SCF, TPO, and FGF-1.


Assuntos
Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Mesoderma/citologia , Células Estromais/citologia , Animais , Técnicas de Cocultura , Sinergismo Farmacológico , Citometria de Fluxo , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Estromais/imunologia
19.
J Immunol ; 185(9): 5326-35, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20881193

RESUMO

Dendritic cells (DCs) in lymphoid tissue comprise conventional DCs (cDCs) and plasmacytoid DCs (pDCs) that develop from common DC progenitors (CDPs). CDPs are Flt3(+)c-kit(int)M-CSFR(+) and reside in bone marrow. In this study, we describe a two-step culture system that recapitulates DC development from c-kit(hi)Flt3(-/lo) multipotent progenitors (MPPs) into CDPs and further into cDC and pDC subsets. MPPs and CDPs are amplified in vitro with Flt3 ligand, stem cell factor, hyper-IL-6, and insulin-like growth factor-1. The four-factor mixture readily induces self-renewal of MPPs and their progression into CDPs and has no self-renewal activity on CDPs. The amplified CDPs respond to all known DC poietins and generate all lymphoid tissue DCs in vivo and in vitro. Additionally, in vitro CDPs recapitulate the cell surface marker and gene expression profile of in vivo CDPs and possess a DC-primed transcription profile. TGF-ß1 impacts on CDPs and directs their differentiation toward cDCs. Genome-wide gene expression profiling of TGF-ß1-induced genes identified instructive transcription factors for cDC subset specification, such as IFN regulatory factor-4 and RelB. TGF-ß1 also induced the transcription factor inhibitor of differentiation/DNA binding 2 that suppresses pDC development. Thus, TGF-ß1 directs CDP differentiation into cDCs by inducing both cDC instructive factors and pDC inhibitory factors.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células-Tronco Hematopoéticas/citologia , Fator de Crescimento Transformador beta1/imunologia , Animais , Separação Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/imunologia , Células-Tronco Multipotentes/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Crescimento Transformador beta1/metabolismo
20.
PLoS One ; 5(7): e11481, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20628604

RESUMO

BACKGROUND: Notch receptor signaling controls developmental cell fates in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the target genes that are directly activated by Notch in the respective tissues. METHODOLOGY/PRINCIPAL FINDINGS: To analyze how Notch signaling mediates its context dependent function(s), we utilized a Tamoxifen-inducible system to activate Notch1 in murine embryonic stem cells at different stages of mesodermal differentiation and performed global transcriptional analyses. We find that the majority of genes regulated by Notch1 are unique for the cell type and vary widely dependent on other signals. We further show that Notch1 signaling regulates expression of genes playing key roles in cell differentiation, cell cycle control and apoptosis in a context dependent manner. In addition to the known Notch1 targets of the Hes and Hey families of transcriptional repressors, Notch1 activates the expression of regulatory transcription factors such as Sox9, Pax6, Runx1, Myf5 and Id proteins that are critically involved in lineage decisions in the absence of protein synthesis. CONCLUSION/SIGNIFICANCE: We suggest that Notch signaling determines lineage decisions and expansion of stem cells by directly activating both key lineage specific transcription factors and their repressors (Id and Hes/Hey proteins) and propose a model by which Notch signaling regulates cell fate commitment and self renewal in dependence of the intrinsic and extrinsic cellular context.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Receptor Notch1/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Receptor Notch1/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA