Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(4): 714-728, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579669

RESUMO

Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.


Assuntos
Argininossuccinato Liase , Acidúria Argininossuccínica , Humanos , Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Guia de Sistemas CRISPR-Cas , Ureia , Edição de Genes/métodos
2.
Nat Biotechnol ; 40(7): 1042-1055, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35241836

RESUMO

Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Células-Tronco Pluripotentes , Animais , Glucose/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Células-Tronco Pluripotentes/metabolismo
3.
Nat Cell Biol ; 24(2): 148-154, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165416

RESUMO

Metabolic characteristics of adult stem cells are distinct from their differentiated progeny, and cellular metabolism is emerging as a potential driver of cell fate conversions1-4. How these metabolic features are established remains unclear. Here we identified inherited metabolism imposed by functionally distinct mitochondrial age-classes as a fate determinant in asymmetric division of epithelial stem-like cells. While chronologically old mitochondria support oxidative respiration, the electron transport chain of new organelles is proteomically immature and they respire less. After cell division, selectively segregated mitochondrial age-classes elicit a metabolic bias in progeny cells, with oxidative energy metabolism promoting differentiation in cells that inherit old mitochondria. Cells that inherit newly synthesized mitochondria with low levels of Rieske iron-sulfur polypeptide 1 have a higher pentose phosphate pathway activity, which promotes de novo purine biosynthesis and redox balance, and is required to maintain stemness during early fate determination after division. Our results demonstrate that fate decisions are susceptible to intrinsic metabolic bias imposed by selectively inherited mitochondria.


Assuntos
Células-Tronco Adultas/metabolismo , Diferenciação Celular , Linhagem da Célula , DNA Mitocondrial/genética , Metabolismo Energético , Genes Mitocondriais , Glândulas Mamárias Humanas/metabolismo , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Senescência Celular , Feminino , Humanos , Glândulas Mamárias Humanas/citologia , Metaboloma , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Fenótipo , Proteoma
4.
Nature ; 594(7863): 430-435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079124

RESUMO

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.


Assuntos
Competição entre as Células , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Esterases/metabolismo , Genes APC , Mutação , Adenoma/genética , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Competição entre as Células/genética , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Meios de Cultivo Condicionados , Progressão da Doença , Esterases/antagonistas & inibidores , Esterases/genética , Feminino , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
5.
Cancer Res ; 80(7): 1414-1427, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32029551

RESUMO

For maximal oncogenic activity, cellular MYC protein levels need to be tightly controlled so that they do not induce apoptosis. Here, we show how ubiquitin ligase UBR5 functions as a molecular rheostat to prevent excess accumulation of MYC protein. UBR5 ubiquitinates MYC and its effects on MYC protein stability are independent of FBXW7. Silencing of endogenous UBR5 induced MYC protein expression and regulated MYC target genes. Consistent with the tumor suppressor function of UBR5 (HYD) in Drosophila, HYD suppressed dMYC-dependent overgrowth of wing imaginal discs. In contrast, in cancer cells, UBR5 suppressed MYC-dependent priming to therapy-induced apoptosis. Of direct cancer relevance, MYC and UBR5 genes were coamplified in MYC-driven human cancers. Functionally, UBR5 suppressed MYC-mediated apoptosis in p53-mutant breast cancer cells with UBR5/MYC coamplification. Furthermore, single-cell immunofluorescence analysis demonstrated reciprocal expression of UBR5 and MYC in human basal-type breast cancer tissues. In summary, UBR5 is a novel MYC ubiquitin ligase and an endogenous rheostat for MYC activity. In MYC-amplified, and p53-mutant breast cancer cells, UBR5 has an important role in suppressing MYC-mediated apoptosis priming and in protection from drug-induced apoptosis. SIGNIFICANCE: These findings identify UBR5 as a novel MYC regulator, the inactivation of which could be very important for understanding of MYC dysregulation on cancer cells. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1414/F1.large.jpg.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Animais , Animais Geneticamente Modificados , Apoptose/genética , Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Modelos Animais , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA-Seq , Análise Serial de Tecidos , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
6.
Dev Cell ; 47(1): 112-121.e3, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30220570

RESUMO

The intestine is an organ with an exceptionally high rate of cell turnover, and perturbations in this process can lead to severe diseases such as cancer or intestinal atrophy. Nutrition has a profound impact on intestinal volume and cellular architecture. However, how intestinal homeostasis is maintained in fluctuating dietary conditions remains insufficiently understood. By utilizing the Drosophila midgut model, we reveal a novel stem cell intrinsic mechanism coupling cellular metabolism with stem cell extrinsic growth signal. Our results show that intestinal stem cells (ISCs) employ the hexosamine biosynthesis pathway (HBP) to monitor nutritional status. Elevated activity of HBP promotes Warburg effect-like metabolic reprogramming required for adjusting the ISC division rate according to nutrient content. Furthermore, HBP activity is an essential facilitator for insulin signaling-induced ISC proliferation. In conclusion, ISC intrinsic hexosamine synthesis regulates metabolic pathway activities and defines the stem cell responsiveness to niche-derived growth signals.


Assuntos
Hexosaminas/biossíntese , Hexosaminas/metabolismo , Nutrientes/metabolismo , Animais , Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Enterócitos/metabolismo , Homeostase , Intestinos/citologia , Intestinos/fisiologia , Nutrientes/fisiologia , Transdução de Sinais , Células-Tronco/metabolismo
7.
Genetics ; 207(4): 1231-1253, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29203701

RESUMO

Carbohydrate metabolism is essential for cellular energy balance as well as for the biosynthesis of new cellular building blocks. As animal nutrient intake displays temporal fluctuations and each cell type within the animal possesses specific metabolic needs, elaborate regulatory systems are needed to coordinate carbohydrate metabolism in time and space. Carbohydrate metabolism is regulated locally through gene regulatory networks and signaling pathways, which receive inputs from nutrient sensors as well as other pathways, such as developmental signals. Superimposed on cell-intrinsic control, hormonal signaling mediates intertissue information to maintain organismal homeostasis. Misregulation of carbohydrate metabolism is causative for many human diseases, such as diabetes and cancer. Recent work in Drosophila melanogaster has uncovered new regulators of carbohydrate metabolism and introduced novel physiological roles for previously known pathways. Moreover, genetically tractable Drosophila models to study carbohydrate metabolism-related human diseases have provided new insight into the mechanisms of pathogenesis. Due to the high degree of conservation of relevant regulatory pathways, as well as vast possibilities for the analysis of gene-nutrient interactions and tissue-specific gene function, Drosophila is emerging as an important model system for research on carbohydrate metabolism.


Assuntos
Metabolismo dos Carboidratos/genética , Drosophila melanogaster/metabolismo , Metabolismo Energético/genética , Doenças Metabólicas/genética , Animais , Carboidratos/genética , Drosophila melanogaster/genética , Glucose/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Transdução de Sinais/genética
8.
Dev Cell ; 43(2): 240-252.e5, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29065309

RESUMO

Ribosome biogenesis regulates animal growth and is controlled by nutrient-responsive mTOR signaling. How ribosome biogenesis is regulated during the developmental growth of animals and how nutrient-responsive signaling adjusts ribosome biogenesis in this setting have remained insufficiently understood. We uncover PWP1 as a chromatin-associated regulator of developmental growth with a conserved role in RNA polymerase I (Pol I)-mediated rRNA transcription. We further observed that PWP1 epigenetically maintains the rDNA loci in a transcription-competent state. PWP1 responds to nutrition in Drosophila larvae via mTOR signaling through gene expression and phosphorylation, which controls the nucleolar localization of dPWP1. Our data further imply that dPWP1 acts synergistically with mTOR signaling to regulate the nucleolar localization of TFIIH, a known elongation factor of Pol I. Ribosome biogenesis is often deregulated in cancer, and we demonstrate that high PWP1 levels in human head and neck squamous cell carcinoma tumors are associated with poor prognosis.


Assuntos
Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Alimentos , Regulação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Proteínas Nucleares/metabolismo , Ribossomos/genética , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/genética , DNA Ribossômico/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Proteínas Nucleares/genética , Fosforilação , Prognóstico , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Transdução de Sinais , Taxa de Sobrevida , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica
9.
Curr Biol ; 27(3): 458-464, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132818

RESUMO

Nutrient-sensing pathways respond to changes in the levels of macronutrients, such as sugars, lipids, or amino acids, and regulate metabolic pathways to maintain organismal homeostasis [1, 2]. Consequently, nutrient sensing provides animals with the metabolic flexibility necessary for enduring temporal fluctuations in nutrient intake. Recent studies have shown that an animal's ability to survive on a high-sugar diet is determined by sugar-responsive gene regulation [3-8]. It remains to be elucidated whether other levels of metabolic control, such as post-translational regulation of metabolic enzymes, also contribute to organismal sugar tolerance. Furthermore, the sugar-regulated metabolic pathways contributing to sugar tolerance remain insufficiently characterized. Here, we identify Salt-inducible kinase 3 (SIK3), a member of the AMP-activated protein kinase (AMPK)-related kinase family, as a key determinant of Drosophila sugar tolerance. SIK3 allows sugar-feeding animals to increase the reductive capacity of nicotinamide adenine dinucleotide phosphate (NADPH/NADP+). NADPH mediates the reduction of the intracellular antioxidant glutathione, which is essential for survival on a high-sugar diet. SIK3 controls NADP+ reduction by phosphorylating and activating Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway. SIK3 gene expression is regulated by the sugar-regulated transcription factor complex Mondo-Mlx, which was previously identified as a key determinant of sugar tolerance. SIK3 converges with Mondo-Mlx in sugar-induced activation of G6PD, and simultaneous inhibition of SIK3 and Mondo-Mlx leads to strong synergistic lethality on a sugar-containing diet. In conclusion, SIK3 cooperates with Mondo-Mlx to maintain organismal sugar tolerance through the regulation of NADPH/NADP+ redox balance.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Glucose/metabolismo , NADP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ciclo Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Glucosefosfato Desidrogenase/metabolismo , Glutationa/química , Glutationa/metabolismo , Homeostase , NADP/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxirredução , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Homologia de Sequência , Transdução de Sinais
10.
PLoS Genet ; 10(11): e1004764, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25393288

RESUMO

Insulin-like signalling is a conserved mechanism that coordinates animal growth and metabolism with nutrient status. In Drosophila, insulin-producing median neurosecretory cells (IPCs) regulate larval growth by secreting insulin-like peptides (dILPs) in a diet-dependent manner. Previous studies have shown that nutrition affects dILP secretion through humoral signals derived from the fat body. Here we uncover a novel mechanism that operates cell autonomously in the IPCs to regulate dILP secretion. We observed that impairment of ribosome biogenesis specifically in the IPCs strongly inhibits dILP secretion, which consequently leads to reduced body size and a delay in larval development. This response is dependent on p53, a known surveillance factor for ribosome biogenesis. A downstream effector of this growth inhibitory response is an atypical MAP kinase ERK7 (ERK8/MAPK15), which is upregulated in the IPCs following impaired ribosome biogenesis as well as starvation. We show that ERK7 is sufficient and essential to inhibit dILP secretion upon impaired ribosome biogenesis, and it acts epistatically to p53. Moreover, we provide evidence that p53 and ERK7 contribute to the inhibition of dILP secretion upon starvation. Thus, we conclude that a cell autonomous ribosome surveillance response, which leads to upregulation of ERK7, inhibits dILP secretion to impede tissue growth under limiting dietary conditions.


Assuntos
Proteínas de Drosophila/genética , Insulina/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteína Supressora de Tumor p53/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
11.
Genes Dev ; 27(4): 441-9, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23431056

RESUMO

Endoplasmic reticulum (ER) stress is emerging as a potential contributor to the onset of type 2 diabetes by making cells insulin-resistant. However, our understanding of the mechanisms by which ER stress affects insulin response remains fragmentary. Here we present evidence that the ER stress pathway acts via a conserved signaling mechanism involving the protein kinase PERK to modulate cellular insulin responsiveness. Insulin signaling via AKT reduces activity of FOXO transcription factors. In some cells, PERK can promote insulin responsiveness. However, we found that PERK also acts oppositely via phosphorylation of FOXO to promote FOXO activity. Inhibition of PERK improves cellular insulin responsiveness at the level of FOXO activity. We suggest that the protein kinase PERK may be a promising pharmacological target for ameliorating insulin resistance.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Resistência à Insulina/fisiologia , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Células Hep G2 , Humanos , Células MCF-7 , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Transporte Proteico
12.
Semin Cell Dev Biol ; 23(6): 640-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22406740

RESUMO

The paralogous transcription factors ChREBP and MondoA, together with their common binding partner Mlx, have emerged as key mediators of intracellular glucose sensing. By regulating target genes involved in glycolysis and lipogenesis, they mediate metabolic adaptation to changing glucose levels. As disturbed glucose homeostasis plays a central role in human metabolic diseases and as cancer cells often display altered glucose metabolism, better understanding of cellular glucose sensing will likely uncover new therapeutic opportunities. Here we review the regulation, function and evolutionary conservation of the ChREBP/MondoA-Mlx glucose sensing system and discuss possible directions for future research.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Metabolismo dos Carboidratos , Glucose/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Metabolismo Energético , Humanos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Elementos de Resposta , Transcrição Gênica
13.
PLoS One ; 7(12): e51997, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284846

RESUMO

BACKGROUND: Glial cell line-derived neurotrophic factor (GDNF) family ligands are secreted growth factors distantly related to the TGF-ß superfamily. In mammals, they bind to the GDNF family receptor α (Gfrα) and signal through the Ret receptor tyrosine kinase. In order to gain insight into the evolution of the Ret-Gfr-Gdnf signaling system, we have cloned and characterized the first invertebrate Gfr-like cDNA (DmGfrl) from Drosophila melanogaster and generated a DmGfrl mutant allele. RESULTS: We found that DmGfrl encodes a large GPI-anchored membrane protein with four GFR-like domains. In line with the fact that insects lack GDNF ligands, DmGfrl mediated neither Drosophila Ret phosphorylation nor mammalian RET phosphorylation. In situ hybridization analysis revealed that DmGfrl is expressed in the central and peripheral nervous systems throughout Drosophila development, but, surprisingly, DmGfrl and DmRet expression patterns were largely non-overlapping. We generated a DmGfrl null allele by genomic FLP deletion and found that both DmGfrl null females and males are viable but display fertility defects. The female fertility defect manifested as dorsal appendage malformation, small size and reduced viability of eggs laid by mutant females. In male flies DmGfrl interacted genetically with the Drosophila Ncam (neural cell adhesion molecule) homolog FasII to regulate fertility. CONCLUSION: Our results suggest that Ret and Gfrl did not function as an in cis receptor-coreceptor pair before the emergence of GDNF family ligands, and that the Ncam-Gfr interaction predated the in cis Ret-Gfr interaction in evolution. The fertility defects that we describe in DmGfrl null flies suggest that GDNF receptor-like has an evolutionarily ancient role in regulating male fertility and a previously unrecognized role in regulating oogenesis. SIGNIFICANCE: These results shed light on the evolutionary aspects of the structure, expression and function of Ret-Gfrα and Ncam-Gfrα signaling complexes.


Assuntos
Evolução Biológica , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Ligadas por GPI/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular , Membrana Celular/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epistasia Genética , Feminino , Fertilidade/genética , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica no Desenvolvimento , Ordem dos Genes , Glicosilação , Masculino , Dados de Sequência Molecular , Morfogênese/genética , Mutação , Neurônios/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Transporte Proteico , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transcrição Gênica
14.
PLoS Genet ; 7(12): e1002429, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22242005

RESUMO

The insulin/IGF-activated AKT signaling pathway plays a crucial role in regulating tissue growth and metabolism in multicellular animals. Although core components of the pathway are well defined, less is known about mechanisms that adjust the sensitivity of the pathway to extracellular stimuli. In humans, disturbance in insulin sensitivity leads to impaired clearance of glucose from the blood stream, which is a hallmark of diabetes. Here we present the results of a genetic screen in Drosophila designed to identify regulators of insulin sensitivity in vivo. Components of the MAPK/ERK pathway were identified as modifiers of cellular insulin responsiveness. Insulin resistance was due to downregulation of insulin-like receptor gene expression following persistent MAPK/ERK inhibition. The MAPK/ERK pathway acts via the ETS-1 transcription factor Pointed. This mechanism permits physiological adjustment of insulin sensitivity and subsequent maintenance of circulating glucose at appropriate levels.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Glucose/metabolismo , Resistência à Insulina/genética , Insulina/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Técnicas de Cultura de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Insulina/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/genética
15.
BMC Cancer ; 8: 282, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18831768

RESUMO

BACKGROUND: AKT signaling promotes cell growth, proliferation and survival and is hyperactivated in many cancers. TOR complex 2 (TORC2) activates AKT by phosphorylating it on the 'hydrophobic motif' site. Hydrophobic motif site phosphorylation is needed only for a subset of AKT functions. Whether proliferation of tumor cells depends on TORC2 activity has not been thoroughly explored. METHODS: We used RNAi-mediated knockdown of rictor to inhibit TORC2 activity in MCF7 and PC3 tumor cells to analyze the importance of TORC2 on proliferation of tumor cells. RESULTS: TORC2 inhibition reduced proliferation and anchorage-independent growth of both cell lines. Rictor depleted cells accumulated G1 phase, and showed prominent downregulation of Cyclin D1. CONCLUSION: This study provides further evidence that inhibition of TORC2 activity might be a useful strategy to inhibit proliferation of tumor cells and subsequent tumor growth.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Próstata/patologia , Fatores de Transcrição/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Adesão Celular/fisiologia , Ciclo Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Fase G1/fisiologia , Humanos , Masculino , Proteína Oncogênica v-akt/antagonistas & inibidores , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Neoplasias da Próstata/metabolismo , Interferência de RNA , Proteína Companheira de mTOR Insensível à Rapamicina , Fatores de Transcrição/antagonistas & inibidores
16.
Cell Metab ; 7(1): 21-32, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18177722

RESUMO

Animals use the insulin/TOR signaling pathway to mediate their response to fluctuations in nutrient availability. Energy and amino acids are monitored at the single-cell level via the TOR branch of the pathway and systemically via insulin signaling to regulate cellular growth and metabolism. Using a combination of genetics, expression profiling, and chromatin immunoprecipitation, we examine nutritional control of gene expression and identify the transcription factor Myc as an important mediator of TOR-dependent regulation of ribosome biogenesis. We also identify myc as a direct target of FOXO and provide genetic evidence that Myc has a key role in mediating the effects of TOR and FOXO on growth and metabolism. FOXO and TOR also converge to regulate protein synthesis, acting via 4E-BP and Lk6, regulators of the translation factor eIF4E. This study uncovers a network of convergent regulation of protein biosynthesis by the FOXO and TOR branches of the nutrient-sensing pathway.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Insulina/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/genética , Eletroforese em Gel de Poliacrilamida , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Jejum , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Immunoblotting , Imunoprecipitação , Insulina/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Serina-Treonina Quinases TOR , Transcrição Gênica
17.
Genes Dev ; 21(6): 632-7, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17369395

RESUMO

Phosphatidylinositol-3-kinase (PI3K)/AKT signaling is essential for growth and metabolism and is elevated in many cancers. Enzymatic activity of AKT has been shown to depend on phosphorylation of two conserved sites by PDK1 and TOR (target of rapamycin) complex 2 (TORC2) in a PI3K-dependent manner. Here we analyze the role of TORC2-mediated AKT phosphorylation in Drosophila. Mutants removing critical TORC2 components, rictor and sin1, strongly reduced AKT hydrophobic motif (HM) phosphorylation and AKT activity, but showed only minor growth impairment. A mutant form of AKT lacking the HM phosphorylation site displayed comparable activity. In contrast to the mild effects of removing HM site phosphorylation at normal levels of PI3K activity, loss of TORC2 activity strongly inhibited hyperplasia caused by elevated pathway activity, as in mutants of the tumor suppressor PTEN. Thus, TORC2 acts as a rheostat to broaden the range of AKT signaling at the high end of its range.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sequência de Aminoácidos , Animais , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Genes de Insetos , Dados de Sequência Molecular , Mutação , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo
18.
J Biol Chem ; 280(29): 27345-55, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15886205

RESUMO

The caspase-8 inhibitor c-FLIP exists as two splice variants, c-FLIP(L) and c-FLIP(S), with distinct roles in death receptor signaling. The mechanisms determining their turnover have not been established. We found that in differentiating K562 erythroleukemia cells both c-FLIP isoforms were inducibly degraded by the proteasome, but c-FLIP(S) was more prone to ubiquitylation and had a considerably shorter half-life. Analysis of the c-FLIP(S)-specific ubiquitylation revealed two lysines, 192 and 195, C-terminal to the death effector domains, as principal ubiquitin acceptors in c-FLIP(S) but not in c-FLIP(L). Furthermore the c-FLIP(S)-specific tail of 19 amino acids, adjacent to the two target lysines, was demonstrated to be the key element determining the isoform-specific instability of c-FLIP(S). Molecular modeling in combination with site-directed mutagenesis demonstrated that the C-terminal tail is required for correct positioning and subsequent ubiquitylation of the target lysines. Because the antiapoptotic operation of c-FLIP(S) was not affected by the tail deletion, the antiapoptotic activity and ubiquitin-mediated degradation of c-FLIP(S) are functionally and structurally independent processes. The presence of a small destabilizing sequence in c-FLIP(S) constitutes an important determinant of c-FLIP(S)/c-FLIP(L) ratios by allowing differential degradation of c-FLIP isoforms. The conformation-based predisposition of c-FLIP(S) to ubiquitin-mediated degradation introduces a novel concept to the regulation of the death-inducing signaling complex.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sequência de Aminoácidos , Apoptose , Sítios de Ligação , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Linhagem Celular Tumoral , Meia-Vida , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Complexo de Endopeptidases do Proteassoma/metabolismo , Isoformas de Proteínas/metabolismo , Transfecção , Ubiquitina/metabolismo
19.
Mol Cell Biol ; 23(4): 1278-91, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12556488

RESUMO

Regulation of the apoptotic threshold is of great importance in the homeostasis of both differentiating and fully developed organ systems. Triggering differentiation has been employed as a strategy to inhibit cell proliferation and accelerate apoptosis in malignant cells, in which the apoptotic threshold is often characteristically elevated. To better understand the mechanisms underlying differentiation-mediated regulation of apoptosis, we have studied death receptor responses during erythroid differentiation of K562 erythroleukemia cells, which normally are highly resistant to tumor necrosis factor (TNF) alpha-, FasL-, and TRAIL-induced apoptosis. However, upon hemin-mediated erythroid differentiation, K562 cells specifically lost their resistance to TNF-related apoptosis-inducing ligand (TRAIL), which efficiently killed the differentiating cells independently of mitochondrial apoptotic signaling. Concomitantly with the increased sensitivity, the expression of both c-FLIP splicing variants, c-FLIP(L) and c-FLIP(S), was downregulated, resulting in an altered caspase 8 recruitment and cleavage in the death-inducing signaling complex (DISC). Stable overexpression of both c-FLIP(L) and c-FLIP(S) rescued the cells from TRAIL-mediated apoptosis with isoform-specific effects on DISC-recruited caspase 8. Our results show that c-FLIP(L) and c-FLIP(S) potently control TRAIL responses, both by distinct regulatory features, and further imply that the differentiation state of malignant cells determines their sensitivity to death receptor signals.


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Células K562/patologia , Glicoproteínas de Membrana/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Processamento Alternativo , Proteínas Reguladoras de Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Proteínas de Transporte/genética , Caspase 8 , Caspase 9 , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Grupo dos Citocromos c/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Regulação para Baixo , Células HL-60/metabolismo , Células HL-60/patologia , Hemina/farmacologia , Humanos , Membranas Intracelulares , Células K562/metabolismo , Glicoproteínas de Membrana/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/metabolismo , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF , Fator de Necrose Tumoral alfa/farmacologia , Proteína bcl-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA