Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Semin Cardiothorac Vasc Anesth ; 26(2): 154-161, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35591803

RESUMO

Cardiac surgery continues to evolve. The last year has been notable for many reasons. The guidelines for coronary revascularization introduced significant discord. The pandemic continues to affect the care on a global scale. Advances in organ procurement and dissection care move forward with better understanding and better technology.


Assuntos
COVID-19 , Procedimentos Cirúrgicos Cardíacos , Transplante de Coração , Obtenção de Tecidos e Órgãos , Morte , Humanos
2.
J Exp Med ; 218(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857288

RESUMO

Hematopoietic stem cells (HSCs) are capable of entering the cell cycle to replenish the blood system in response to inflammatory cues; however, excessive proliferation in response to chronic inflammation can lead to either HSC attrition or expansion. The mechanism(s) that limit HSC proliferation and expansion triggered by inflammatory signals are poorly defined. Here, we show that long-term HSCs (HSCLT) rapidly repress protein synthesis and cell cycle genes following treatment with the proinflammatory cytokine interleukin (IL)-1. This gene program is associated with activation of the transcription factor PU.1 and direct PU.1 binding at repressed target genes. Notably, PU.1 is required to repress cell cycle and protein synthesis genes, and IL-1 exposure triggers aberrant protein synthesis and cell cycle activity in PU.1-deficient HSCs. These features are associated with expansion of phenotypic PU.1-deficient HSCs. Thus, we identify a PU.1-dependent mechanism triggered by innate immune stimulation that limits HSC proliferation and pool size. These findings provide insight into how HSCs maintain homeostasis during inflammatory stress.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Inflamação/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Estresse Fisiológico/fisiologia , Transativadores/metabolismo , Animais , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Homeostase/fisiologia , Imunidade Inata/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
3.
J Exp Med ; 218(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33914855

RESUMO

The early events that drive myeloid oncogenesis are not well understood. Most studies focus on the cell-intrinsic genetic changes and how they impact cell fate decisions. We consider how chronic exposure to the proinflammatory cytokine, interleukin-1ß (IL-1ß), impacts Cebpa-knockout hematopoietic stem and progenitor cells (HSPCs) in competitive settings. Surprisingly, we found that Cebpa loss did not confer a hematopoietic cell-intrinsic competitive advantage; rather chronic IL-1ß exposure engendered potent selection for Cebpa loss. Chronic IL-1ß augments myeloid lineage output by activating differentiation and repressing stem cell gene expression programs in a Cebpa-dependent manner. As a result, Cebpa-knockout HSPCs are resistant to the prodifferentiative effects of chronic IL-1ß, and competitively expand. We further show that ectopic CEBPA expression reduces the fitness of established human acute myeloid leukemias, coinciding with increased differentiation. These findings have important implications for the earliest events that drive hematologic disorders, suggesting that chronic inflammation could be an important driver of leukemogenesis and a potential target for intervention.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Interleucina-1beta/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem da Célula/fisiologia , Expressão Gênica/fisiologia , Células HEK293 , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Inflamação/metabolismo , Leucemia Mielomonocítica Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo
4.
Sci Rep ; 10(1): 12198, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699207

RESUMO

Aneuploidy is a feature of many cancers. Recent studies demonstrate that in the hematopoietic stem and progenitor cell (HSPC) compartment aneuploid cells have reduced fitness and are efficiently purged from the bone marrow. However, early phases of hematopoietic reconstitution following bone marrow transplantation provide a window of opportunity whereby aneuploid cells rise in frequency, only to decline to basal levels thereafter. Here we demonstrate by Monte Carlo modeling that two mechanisms could underlie this aneuploidy peak: rapid expansion of the engrafted HSPC population and bone marrow microenvironment degradation caused by pre-transplantation radiation treatment. Both mechanisms reduce the strength of purifying selection acting in early post-transplantation bone marrow. We explore the contribution of other factors such as alterations in cell division rates that affect the strength of purifying selection, the balance of drift and selection imposed by the HSPC population size, and the mutation-selection balance dependent on the rate of aneuploidy generation per cell division. We propose a somatic evolutionary model for the dynamics of cells with aneuploidy or other fitness-reducing mutations during hematopoietic reconstitution following bone marrow transplantation. Similar alterations in the strength of purifying selection during cancer development could help explain the paradox of aneuploidy abundance in tumors despite somatic fitness costs.


Assuntos
Evolução Clonal , Células-Tronco Hematopoéticas/citologia , Modelos Biológicos , Aneuploidia , Animais , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Divisão Celular , Microambiente Celular , Feminino , Raios gama , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos da radiação , Camundongos , Irradiação Corporal Total
5.
Aging Cell ; 18(3): e12938, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30848555

RESUMO

Recent reports by Martincorena et al and Yokoyama et al reveal unanticipated dynamics of somatic evolution in the esophageal epithelium, with clonal expansions apparently driven by mutations in Notch1 dominating the epithelium even in middle-aged individuals, far outpacing the prevalence of these mutations in esophageal cancers. We propose a model whereby the promotion of clonal expansions by mutations such as in Notch1 can limit more malignant somatic evolutionary trajectories until old ages.


Assuntos
Esôfago , Neoplasias , Idoso , Células Clonais , Epitélio , Humanos , Pessoa de Meia-Idade , Mutação
6.
Haematologica ; 102(12): 1985-1994, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28883079

RESUMO

While dietary folate deficiency is associated with increased risk for birth defects and other diseases, evidence suggests that supplementation with folic acid can contribute to predisposition to some diseases, including immune dysfunction and cancer. Herein, we show that diets supplemented with folic acid both below and above the recommended levels led to significantly altered metabolism in multiple tissues in mice. Surprisingly, both low and excessive dietary folate induced similar metabolic changes, which were particularly evident for nucleotide biosynthetic pathways in B-progenitor cells. Diet-induced metabolic changes in these cells partially phenocopied those observed in mice treated with anti-folate drugs, suggesting that both deficiency and excessive levels of dietary folic acid compromise folate-dependent biosynthetic pathways. Both folate deficiency and excessive dietary folate levels compromise hematopoiesis, resulting in defective cell cycle progression, persistent DNA damage, and impaired production of lymphocytes. These defects reduce the reconstitution potential in transplantation settings and increase radiation-induced mortality. We conclude that excessive folic acid supplementation can metabolically mimic dietary folate insufficiency, leading to similar functional impairment of hematopoiesis.


Assuntos
Suplementos Nutricionais/efeitos adversos , Deficiência de Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Hematopoese/efeitos dos fármacos , Animais , Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Metabolismo/efeitos dos fármacos , Camundongos , Nucleotídeos/biossíntese , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA