Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Endocrinology ; 164(9)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548257

RESUMO

In this review, we provide the status of research on vasoactive intestinal peptide (VIP) and oxytocin, typical C-terminal α-amidated peptide hormones, including their precursor protein structures, processing and C-terminal α-amidation, and the recently identified mechanisms of regulation of oxytocin secretion and its transportation through the blood brain barrier. More than half of neural and endocrine peptides, such as VIP and oxytocin, have the α-amide structure at their C-terminus, which is essential for biological activities. We have studied the synthesis and function of C-terminal α-amidated peptides, including VIP and oxytocin, since the 1980s. Human VIP mRNA encoded not only VIP but also another related C-terminal α-amidated peptide, PHM-27 (peptide having amino-terminal histidine, carboxy-terminal methionine amide, and 27 amino acid residues). The human VIP/PHM-27 gene is composed of 7 exons and regulated synergistically by cyclic AMP and protein kinase C pathways. VIP has an essential role in glycemic control using transgenic mouse technology. The peptide C-terminal α-amidation proceeded through a 2-step mechanism catalyzed by 2 different enzymes encoded in a single mRNA. In the oxytocin secretion from the hypothalamus/the posterior pituitary, the CD38-cyclic ADP-ribose signal system, which was first established in the insulin secretion from pancreatic ß cells of the islets of Langerhans, was found to be essential. A possible mechanism involving RAGE (receptor for advanced glycation end-products) of the oxytocin transportation from the blood stream into the brain through the blood-brain barrier has also been suggested.


Assuntos
Ocitocina , Peptídeo Intestinal Vasoativo , Camundongos , Humanos , Animais , Peptídeo Intestinal Vasoativo/genética , Peptídeo PHI/genética , Receptor para Produtos Finais de Glicação Avançada , Amidas , Camundongos Transgênicos
2.
EMBO J ; 42(15): e111247, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357972

RESUMO

Social behavior is essential for health, survival, and reproduction of animals; however, the role of astrocytes in social behavior remains largely unknown. The transmembrane protein CD38, which acts both as a receptor and ADP-ribosyl cyclase to produce cyclic ADP-ribose (cADPR) regulates social behaviors by promoting oxytocin release from hypothalamic neurons. CD38 is also abundantly expressed in astrocytes in the postnatal brain and is important for astroglial development. Here, we demonstrate that the astroglial-expressed CD38 plays an important role in social behavior during development. Selective deletion of CD38 in postnatal astrocytes, but not in adult astrocytes, impairs social memory without any other behavioral abnormalities. Morphological analysis shows that depletion of astroglial CD38 in the postnatal brain interferes with synapse formation in the medial prefrontal cortex (mPFC) and hippocampus. Moreover, astroglial CD38 expression promotes synaptogenesis of excitatory neurons by increasing the level of extracellular SPARCL1 (also known as Hevin), a synaptogenic protein. The release of SPARCL1 from astrocytes is regulated by CD38/cADPR/calcium signaling. These data demonstrate a novel developmental role of astrocytes in neural circuit formation and regulation of social behavior in adults.


Assuntos
Antígenos CD , ADP-Ribose Cíclica , Animais , ADP-Ribosil Ciclase 1/genética , Antígenos CD/metabolismo , ADP-Ribose Cíclica/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Astrócitos/metabolismo , Sinapses/metabolismo
3.
Front Immunol ; 14: 1166609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215105

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a substrate of adenosine diphosphate (ADP)-ribosyl cyclase and is catalyzed to cyclic ADP-ribose (cADPR) by CD38 and/or CD157. cADPR, a Ca2+ mobilizing second messenger, is critical in releasing oxytocin from the hypothalamus into the brain. Although NAD precursors effectively play a role in neurodegenerative disorders, muscular dystrophy, and senescence, the beneficial effects of elevating NAD by NAD precursor supplementation on brain function, especially social interaction, and whether CD38 is required in this response, has not been intensely studied. Here, we report that oral gavage administration of nicotinamide riboside, a perspective NAD precursor with high bioavailability, for 12 days did not show any suppressive or increasing effects on sociability (mouse's interest in social targets compared to non-social targets) in both CD157KO and CD38KO male mice models in a three-chamber test. CD157KO and CD38KO mice displayed no social preference (that is, more interest towards a novel mouse than a familiar one) behavior. This defect was rescued after oral gavage administration of nicotinamide riboside for 12 days in CD157KO mice, but not in CD38KO mice. Social memory was not observed in CD157KO and CD38KO mice; subsequently, nicotinamide riboside administration had no effect on social memory. Together with the results that nicotinamide riboside had essentially no or little effect on body weight during treatment in CD157KO mice, nicotinamide riboside is less harmful and has beneficial effect on defects in recovery from social behavioral, for which CD38 is required in mice.


Assuntos
ADP-Ribose Cíclica , NAD , Masculino , Camundongos , Animais , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase , Camundongos Knockout , Comportamento Social
4.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216202

RESUMO

Non-enzymatic glycation is an unavoidable reaction that occurs across biological taxa. The final products of this irreversible reaction are called advanced glycation end-products (AGEs). The endogenously formed AGEs are known to be bioactive and detrimental to human health. Additionally, exogenous food-derived AGEs are debated to contribute to the development of aging and various diseases. Receptor for AGEs (RAGE) is widely known to elicit biological reactions. The binding of RAGE to other ligands (e.g., high mobility group box 1, S100 proteins, lipopolysaccharides, and amyloid-ß) can result in pathological processes via the activation of intracellular RAGE signaling pathways, including inflammation, diabetes, aging, cancer growth, and metastasis. RAGE is now recognized as a pattern-recognition receptor. All mammals have RAGE homologs; however, other vertebrates, such as birds, amphibians, fish, and reptiles, do not have RAGE at the genomic level. This evidence from an evolutionary perspective allows us to understand why mammals require RAGE. In this review, we provide an overview of the scientific knowledge about the role of RAGE in physiological and pathological processes. In particular, we focus on (1) RAGE biology, (2) the role of RAGE in physiological and pathophysiological processes, (3) RAGE isoforms, including full-length membrane-bound RAGE (mRAGE), and the soluble forms of RAGE (sRAGE), which comprise endogenous secretory RAGE (esRAGE) and an ectodomain-shed form of RAGE, and (4) oxytocin transporters in the brain and intestine, which are important for maternal bonding and social behaviors.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Animais , Humanos , Relações Mãe-Filho , Ocitocina/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia
5.
J Neurochem ; 158(2): 311-327, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33871064

RESUMO

Neuroinflammation is initiated by activation of the brain's innate immune system in response to an inflammatory challenge. Insufficient control of neuroinflammation leads to enhanced or prolonged pathology in various neurological conditions including multiple sclerosis and Alzheimer's disease. Nicotinamide adenine dinucleotide (NAD+ ) plays critical roles in cellular energy metabolism and calcium homeostasis. Our previous study demonstrated that deletion of CD38, which consumes NAD+ , suppressed cuprizone-induced demyelination, neuroinflammation, and glial activation. However, it is still unknown whether CD38 directly affects neuroinflammation through regulating brain NAD+ level. In this study, we investigated the effect of CD38 deletion and inhibition and supplementation of NAD+ on lipopolysaccharide (LPS)-induced neuroinflammation in mice. Intracerebroventricular injection of LPS significantly increased CD38 expression especially in the hippocampus. Deletion of CD38 decreased LPS-induced inflammatory responses and glial activation. Pre-administration of apigenin, a flavonoid with CD38 inhibitory activity, or nicotinamide riboside (NR), an NAD+ precursor, increased NAD+ level, and significantly suppressed induction of cytokines and chemokines, glial activation and subsequent neurodegeneration after LPS administration. In cell culture, LPS-induced inflammatory responses were suppressed by treatment of primary astrocytes or microglia with apigenin, NAD+ , NR or 78c, the latter a specific CD38 inhibitor. Finally, all these compounds suppressed NF-κB signaling pathway in microglia. These results suggest that CD38-mediated neuroinflammation is linked to NAD+ consumption and that boosting NAD+ by CD38 inhibition and NR supplementation directly suppress neuroinflammation in the brain.


Assuntos
ADP-Ribosil Ciclase 1/antagonistas & inibidores , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos , Glicoproteínas de Membrana/antagonistas & inibidores , Microglia/efeitos dos fármacos , Microglia/patologia , NAD/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio/farmacologia , Animais , Apigenina/farmacologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Deleção de Genes , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraventriculares , Lipopolissacarídeos/administração & dosagem , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , NAD/farmacologia , NF-kappa B/genética , Degeneração Neural , Niacinamida/farmacologia
6.
J Neuroendocrinol ; 33(3): e12963, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33733541

RESUMO

Oxytocin (OT) is a neuropeptide hormone. Single and repetitive administration of OT increases social interaction and maternal behaviour in humans and mammals. Recently, it was found that the receptor for advanced glycation end-products (RAGE) is an OT-binding protein and plays a critical role in the uptake of OT to the brain after peripheral OT administration. Here, we address some unanswered questions on RAGE-dependent OT transport. First, we found that, after intranasal OT administration, the OT concentration increased in the extracellular space of the medial prefrontal cortex (mPFC) of wild-type male mice, as measured by push-pull microperfusion. No increase of OT in the mPFC was observed in RAGE knockout male mice. Second, in a reconstituted in vitro blood-brain barrier system, inclusion of the soluble form of RAGE (endogenous secretory RAGE [esRAGE]), an alternative splicing variant, in the luminal (blood) side had no effect on the transport of OT to the abluminal (brain) chamber. Third, OT concentrations in the cerebrospinal fluid after i.p. OT injection were slightly higher in male mice overexpressing esRAGE (esRAGE transgenic) compared to those in wild-type male mice, although this did not reach statistical significance. Although more extensive confirmation is necessary because of the small number of experiments in the present study, the reported data support the hypothesis that RAGE may be involved in the transport of OT to the mPFC from the circulation. These results suggest that the soluble form of RAGE in the plasma does not function as a decoy in vitro.


Assuntos
Química Encefálica/genética , Ocitocina/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Processamento Alternativo , Animais , Antígenos de Neoplasias/genética , Transporte Biológico/genética , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Espaço Extracelular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/genética , Ocitocina/líquido cefalorraquidiano
7.
PLoS One ; 15(12): e0244022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33326496

RESUMO

The ability of CD38 and CD157 to utilize nicotinamide adenine dinucleotide (NAD) has received much attention because the aging-induced elevation of CD38 expression plays a role in the senescence-related decline in NAD levels. Therefore, it is of interest to examine and compare the effects of age-associated changes on the general health and brain function impairment of Cd157 and Cd38 knockout (CD157 KO and CD38 KO) mice. The body weight and behaviors were measured in 8-week-old (young adult) or 12-month-old (middle-aged) male mice of both KO strains. The locomotor activity, anxiety-like behavior, and social behavior of the mice were measured in the open field and three-chamber tests. The middle-aged CD157 KO male mice gained more body weight than young adult KO mice, while little or no body weight gain was observed in the middle-aged CD38 KO mice. Middle-aged CD157 KO mice displayed increased anxiety-like behavior and decreased sociability and interaction compared with young adult KO mice. Middle-aged CD38 KO mice showed less anxiety and hyperactivity than CD157 KO mice, similar to young adult CD38 KO mice. The results reveal marked age-dependent changes in male CD157 KO mice but not in male CD38 KO mice. We discuss the distinct differences in aging effects from the perspective of inhibition of NAD metabolism in CD157 and CD38 KO mice, which may contribute to differential behavioral changes during aging.


Assuntos
ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase/genética , Envelhecimento/genética , Antígenos CD/genética , Glicoproteínas de Membrana/genética , Fenótipo , Comportamento Social , Envelhecimento/fisiologia , Animais , Peso Corporal , Proteínas Ligadas por GPI/genética , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Sci Rep ; 10(1): 17795, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082370

RESUMO

Following facial nerve axotomy, nerve function is not fully restored even after reconstruction. This may be attributed to axon degeneration/neuronal death and sustained neuroinflammation. CD38 is an enzyme that catalyses the hydrolysis of nicotinamide adenine dinucleotide (NAD+) and is a candidate molecule for regulating neurodegeneration and neuroinflammation. In this study, we analyzed the effect of CD38 deletion and NAD+ supplementation on neuronal death and glial activation in the facial nucleus in the brain stem, and on axon degeneration and immune cell infiltration in the distal portion of the facial nerve after axotomy in mice. Compared with wild-type mice, CD38 knockout (KO) mice showed reduced microglial activation in the facial nucleus, whereas the levels of neuronal death were not significantly different. In contrast, the axon degeneration and demyelination were delayed, and macrophage accumulation was reduced in the facial nerve of CD38 KO mice after axotomy. Supplementation of NAD+ with nicotinamide riboside slowed the axon degeneration and demyelination, although it did not alter the level of macrophage infiltration after axotomy. These results suggest that CD38 deletion and supplementation of NAD+ may protect transected axon cell-autonomously after facial nerve axotomy.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Axônios/fisiologia , Axotomia/métodos , Doenças do Nervo Facial/metabolismo , Nervo Facial/patologia , NAD/metabolismo , ADP-Ribosil Ciclase 1/genética , Animais , Contagem de Células , Células Cultivadas , Suplementos Nutricionais , Modelos Animais de Doenças , Doenças do Nervo Facial/genética , Doenças do Nervo Facial/terapia , Humanos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Degeneração Neural
9.
Sci Rep ; 10(1): 10035, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572044

RESUMO

Oxytocin (OT) is a critical molecule for social recognition and memory that mediates social and emotional behaviours. In addition, OT acts as an anxiolytic factor and is released during stress. Based on the activity of CD38 as an enzyme that produces the calcium-mobilizing second messenger cyclic ADP-ribose (cADPR), CD157, a sister protein of CD38, has been considered a candidate mediator for the production and release of OT and its social engagement and anti-anxiety functions. However, the limited expression of CD157 in the adult mouse brain undermined confidence that CD157 is an authentic and/or actionable molecular participant in OT-dependent social behaviour. Here, we show that CD157 knockout mice have low levels of circulating OT in cerebrospinal fluid, which can be corrected by the oral administration of nicotinamide riboside, a recently discovered vitamin precursor of nicotinamide adenine dinucleotide (NAD). NAD is the substrate for the CD157- and CD38-dependent production of cADPR. Nicotinamide riboside corrects social deficits and fearful and anxiety-like behaviours in CD157 knockout males. These results suggest that elevating NAD levels with nicotinamide riboside may allow animals with cADPR- and OT-forming deficits to overcome these deficits and function more normally.


Assuntos
Ansiedade/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Niacinamida/análogos & derivados , Ocitocina/deficiência , ADP-Ribosil Ciclase/genética , Animais , Antígenos CD/genética , Transtorno do Espectro Autista/psicologia , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/genética , Masculino , Camundongos , Camundongos Mutantes , Niacinamida/uso terapêutico , Compostos de Piridínio , Comportamento Social
10.
Horm Behav ; 120: 104695, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31987898

RESUMO

In mammals, the development of healthy offspring requires maternal care. Behavior by lactating mothers toward other individuals is an important component of maternal aggression. However, it is unclear whether fathers display aggression primed by pups (an external factor), and the protection mechanism is poorly understood. To address this question, we examined paternal aggression in the ICR mouse strain. We found that sires exposed to cues from pups and lactating dams showed stronger aggression toward intruders than did sires that were deprived of family cues or exposed to nonlactating mates. c-Fos immunohistochemistry showed that cells in both the paraventricular and supraoptic nuclei (PVN and SON, respectively) in the hypothalamus of sires exposed to any cues were highly activated. However, c-Fos activation in oxytocinergic neurons was increased only in sires exposed to pup cues and solely in the PVN. In Cd38-knockout sires, the presence of pups induced no or reduced parental aggression; however, this phenotype was recovered, that is, aggression increased to the wild-type level, after intraperitoneal administration of oxytocin (OT). Specific c-Fos activation patterns induced by pup cues were not found in the PVN of knockout sires. These results demonstrate that the PVN is one of the primary hypothalamic areas involved in paternal aggression and suggest that a CD38-dependent OT mechanism in oxytocinergic neurons is critical for part of the behavior associated with the protection of offspring by nurturing male mice.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase/metabolismo , Agressão/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Ocitocina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Comportamento Paterno/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Pai/psicologia , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Comportamento de Nidação/efeitos dos fármacos , Comportamento Social
11.
Mol Psychiatry ; 25(8): 1849-1858, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-29955161

RESUMO

Although small-scale studies have described the effects of oxytocin on social deficits in autism spectrum disorder (ASD), no large-scale study has been conducted. In this randomized, parallel-group, multicenter, placebo-controlled, double-blind trial in Japan, 106 ASD individuals (18-48 y.o.) were enrolled between Jan 2015 and March 2016. Participants were randomly assigned to a 6-week intranasal oxytocin (48IU/day, n = 53) or placebo (n = 53) group. One-hundred-three participants were analyzed. Since oxytocin reduced the primary endpoint, Autism Diagnostic Observation Schedule (ADOS) reciprocity, (from 8.5 to 7.7; P < .001) but placebo also reduced the score (8.3 to 7.2; P < .001), no between-group difference was found (effect size -0.08; 95% CI, -0.46 to 0.31; P = .69); however, plasma oxytocin was only elevated from baseline to endpoint in the oxytocin-group compared with the placebo-group (effect size -1.12; -1.53 to -0.70; P < .0001). Among the secondary endpoints, oxytocin reduced ADOS repetitive behavior (2.0 to 1.5; P < .0001) compared with placebo (2.0 to 1.8; P = .43) (effect size 0.44; 0.05 to 0.83; P = .026). In addition, the duration of gaze fixation on socially relevant regions, another secondary endpoint, was increased by oxytocin (41.2 to 52.3; P = .03) compared with placebo (45.7 to 40.4; P = .25) (effect size 0.55; 0.10 to 1.0; P = .018). No significant effects were observed for the other secondary endpoints. No significant difference in the prevalence of adverse events was observed between groups, although one participant experienced temporary gynecomastia during oxytocin administration. Based on the present findings, we cannot recommend continuous intranasal oxytocin treatment alone at the current dose and duration for treatment of the core social symptoms of high-functioning ASD in adult men, although this large-scale trial suggests oxytocin's possibility to treat ASD repetitive behavior.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Ocitocina/administração & dosagem , Ocitocina/uso terapêutico , Administração Intranasal , Adolescente , Adulto , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Método Duplo-Cego , Ginecomastia/induzido quimicamente , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Ocitocina/efeitos adversos , Ocitocina/sangue , Adulto Jovem
12.
J Neuroendocrinol ; 32(4): e12815, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31770473

RESUMO

A monoclonal antibody against oxytocin was generated in 7a5 hybridoma cells derived from myeloma cells and lymphocytes from the spleen of mice immunised with a synthetic oxytocin peptide. The 7a5 monoclonal antibody bound with oxytocin in enzyme-linked immunosorbent assays. 7a5 cell growth medium was diluted up to 5000-fold and used for immunohistochemistry. First, to test the specificity of the 7a5 antibody against oxytocin, we stained brain tissues of oxytocin knockout mice, comprising mice in which the first exon of the oxytocin-neurophysin gene is deleted. No 7a5 immunoreactivity was detected in the paraventricular nucleus (PVN) of the hypothalamus of oxytocin knockout mice; however, this area was strongly stained with the anti-vasopressin polyclonal antibody, HM07. Tissue preparations of the wild-type mouse PVN and supraoptic nucleus (SON) displayed 7a5 immunoreactivity that was indistinguishable from the staining produced with an anti-oxytocin polyclonal antibody, HM06. The immunoreactivity of HM06 in the PVN was similar to that of an anti-oxytocin monoclonal antibody, PS38. We then examined the cross-reactivity of 7a5 with arginine vasopressin. The majority of cell soma and processes stained by 7a5 were not co-stained with the vasopressin antibody in SON and PVN regions. Furthermore, the suprachiasmatic nucleus was stained by the vasopressin antibody but not by 7a5. These results demonstrate that 7a5 is a new anti-oxytocin monoclonal antibody recognising oxytocin and not vasopressin; therefore, 7a5 can be used to investigate the role of oxytocin in the brain.


Assuntos
Hipotálamo/metabolismo , Imuno-Histoquímica , Neurônios/metabolismo , Ocitocina/metabolismo , Animais , Anticorpos Monoclonais , Camundongos , Camundongos Knockout
13.
Cells ; 9(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881755

RESUMO

Recent studies provide evidence to support that cluster of differentiation 38 (CD38) and CD157 meaningfully act in the brain as neuroregulators. They primarily affect social behaviors. Social behaviors are impaired in Cd38 and Cd157 knockout mice. Single-nucleotide polymorphisms of the CD38 and CD157/BST1 genes are associated with multiple neurological and psychiatric conditions, including autism spectrum disorder, Parkinson's disease, and schizophrenia. In addition, both antigens are related to infectious and immunoregulational processes. The most important clues to demonstrate how these molecules play a role in the brain are oxytocin (OT) and the OT system. OT is axo-dendritically secreted into the brain from OT-containing neurons and causes activation of OT receptors mainly on hypothalamic neurons. Here, we overview the CD38/CD157-dependent OT release mechanism as the initiation step for social behavior. The receptor for advanced glycation end-products (RAGE) is a newly identified molecule as an OT binding protein and serves as a transporter of OT to the brain, crossing over the blood-brain barrier, resulting in the regulation of brain OT levels. We point out new roles of CD38 and CD157 during neuronal development and aging in relation to nicotinamide adenine dinucleotide+ levels in embryonic and adult nervous systems. Finally, we discuss how CD38, CD157, and RAGE are crucial for social recognition and behavior in daily life.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Comportamento Social , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Biomarcadores , Encéfalo/metabolismo , Sinalização do Cálcio , Ativação Enzimática , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Humanos , Imuno-Histoquímica , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Ocitocina , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Canais de Cátion TRPM/metabolismo
14.
Front Cell Neurosci ; 13: 258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244614

RESUMO

CD38 is an enzyme that catalyzes the synthesis of cyclic adenosine diphosphate-ribose from nicotinamide adenine dinucleotide (NAD+). We recently reported that this molecule regulates the maturation and differentiation of glial cells such as astrocytes and oligodendrocytes (OLs) in the developing brain. To analyze its role in the demyelinating situation, we employed cuprizone (CPZ)-induced demyelination model in mice, which is characterized by oligodendrocyte-specific apoptosis, followed by the strong glial activation, demyelination, and repopulation of OLs. By using this model, we found that CD38 was upregulated in both astrocytes and microglia after CPZ administration. Experiments using wild-type and CD38 knockout (KO) mice, together with those using cultured glial cells, revealed that CD38 deficiency did not affect the initial decrease of the number of OLs, while it attenuated CPZ-induced demyelination, and neurodegeneration. Importantly, the clearance of the degraded myelin and oligodendrocyte repopulation were also reduced in CD38 KO mice. Further experiments revealed that these observations were associated with reduced levels of glial activation and inflammatory responses including phagocytosis, most likely through the enhanced level of NAD+ in CD38-deleted condition. Our results suggest that CD38 and NAD+ in the glial cells play a critical role in the demyelination and subsequent oligodendrocyte remodeling through the modulation of glial activity and neuroinflammation.

15.
Commun Biol ; 2: 76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820471

RESUMO

Oxytocin sets the stage for childbirth by initiating uterine contractions, lactation and maternal bonding behaviours. Mice lacking secreted oxcytocin (Oxt -/-, Cd38 -/-) or its receptor (Oxtr -/-) fail to nurture. Normal maternal behaviour is restored by peripheral oxcytocin replacement in Oxt -/- and Cd38 -/-, but not Oxtr -/- mice, implying that circulating oxcytocin crosses the blood-brain barrier. Exogenous oxcytocin also has behavioural effects in humans. However, circulating polypeptides are typically excluded from the brain. We show that oxcytocin is transported into the brain by receptor for advanced glycation end-products (RAGE) on brain capillary endothelial cells. The increases in oxcytocin in the brain which follow exogenous administration are lost in Ager -/- male mice lacking RAGE, and behaviours characteristic to abnormalities in oxcytocin signalling are recapitulated in Ager -/- mice, including deficits in maternal bonding and hyperactivity. Our findings show that RAGE-mediated transport is critical to the behavioural actions of oxcytocin associated with parenting and social bonding.


Assuntos
Encéfalo/metabolismo , Comportamento Materno/fisiologia , Apego ao Objeto , Ocitocina/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Comportamento Materno/psicologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptor para Produtos Finais de Glicação Avançada/sangue , Receptor para Produtos Finais de Glicação Avançada/genética , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
16.
J Med Chem ; 62(7): 3297-3310, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30896946

RESUMO

The nonapeptide hormone oxytocin (OT) has pivotal brain roles in social recognition and interaction and is thus a promising therapeutic drug for social deficits. Because of its peptide structure, however, OT is rapidly eliminated from the bloodstream, which decreases its potential therapeutic effects in the brain. We found that newly synthesized OT analogues in which the Pro7 of OT was replaced with N-( p-fluorobenzyl)glycine (2) or N-(3-hydroxypropyl)glycine (5) exhibited highly potent binding affinities for OT receptors and Ca2+ mobilization effects by selectively activating OT receptors over vasopressin receptors in HEK cells, where 2 was identified as a superagonist ( EMax = 131%) for OT receptors. Furthermore, the two OT analogues had a remarkably long-acting effect, up to 16-24 h, on recovery from impaired social behaviors in two strains of CD38 knockout mice that exhibit autism spectrum disorder-like social behavioral deficits, whereas the effect of OT itself rapidly diminished.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Ocitocina/análogos & derivados , Comportamento Social , ADP-Ribosil Ciclase 1/genética , Animais , Transtorno do Espectro Autista/metabolismo , Comportamento Animal , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Ocitocina/farmacocinética , Ocitocina/farmacologia , Receptores de Ocitocina/agonistas
17.
J Neural Transm (Vienna) ; 125(1): 17-24, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025713

RESUMO

The role of cyclic ADP-ribose (cADPR) as a second messenger and modulator of the mTOR pathway downstream of dopamine (DA) receptors and/or CD38 was re-examined in the mouse. ADP-ribosyl activity was low in the membranes of neonates, but DA stimulated it via both D1- and D2-like receptors. ADP-ribosyl cyclase activity increased significantly during development in association with increased expression of CD38. The cADPR binding proteins, FKBP12 and FKBP12.6, were expressed in the adult mouse striatum. The ratio of phosphorylated to non-phosphorylated S6 kinase (S6K) in whole mouse striatum homogenates decreased after incubation of adult mouse striatum with extracellular cADPR for 5 min. This effect of cADPR was much weaker in MPTP-treated Parkinson's disease model mice. The inhibitory effects of cADPR and rapamycin were identical. These data suggest that cADPR is an endogenous inhibitor of the mTOR signaling pathway downstream of DA receptors in the mouse striatum and that cADPR plays a certain role in the brain in psychiatric and neurodegenerative diseases.


Assuntos
Corpo Estriado/metabolismo , ADP-Ribose Cíclica/metabolismo , Receptores Dopaminérgicos/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transdução de Sinais/efeitos dos fármacos
18.
Neurochem Int ; 119: 42-48, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28736241

RESUMO

Oxytocin (OT) is a critical molecule for social recognition that mediates social and emotional behaviors. OT is released during stress and acts as an anxiolytic factor. To know the precise molecular mechanisms underlying OT release into the brain during stress is important. It has been reported that intracellular concentrations of free calcium in the hypothalamic neurons are elevated by simultaneous stimulation of cyclic ADP-ribose (cADPR) and heat. We have reported in vitro and in vivo data that supports the idea that release of OT in the brain of male mice is regulated by cADPR and fever in relation to stress conditions. 1) Significantly higher levels of OT release were observed in hypothalamus cultures isolated from subordinate mice in group-housed males compared to dominant males after cage-switch stress; 2) OT concentrations in micro-perfusates at the paraventricular nucleus upon perfusion stimulation with cADPR were enhanced in subordinate mice compared to dominant mice; 3) The OT concentration in the cerebrospinal fluid (CSF) was higher in endotoxin-shock mice with fever compared to controls with no body temperature increase; and 4) In mice exposed to new environmental stress, the CSF OT level transiently increased 5 min after exposure, while the rectal temperature increased from 36.6 °C to 37.8 °C from 5 to 15 min after exposure. In this review, we examine whether or not cADPR and hyperthermia co-regulate hypothalamic OT secretion during social stress through the elevation of intracellular free Ca2+ concentrations involved in CD38-dependent Ca2+ mobilization and TRPM2-dependent Ca2+ influx. Finally, we propose that the interaction between CD38 and TRPM2 seems to be a new mechanism for stress-induced release of OT, which may result in anxiolytic effects for temporal recovery from social impairments in children with autism spectrum disorder during hyperthermia.


Assuntos
Febre/tratamento farmacológico , Hipotálamo/efeitos dos fármacos , Ocitocina/metabolismo , Canais de Cátion TRPM/efeitos dos fármacos , ADP-Ribosil Ciclase 1/efeitos dos fármacos , Animais , Humanos , Hipotálamo/metabolismo , Ocitocina/farmacologia
19.
Brain Sci ; 7(10)2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29035307

RESUMO

Oxytocin (OT) is a nonapeptide that plays an important role in social behavior. Nasal administration of OT has been shown to improve trust in healthy humans and social interaction in autistic subjects. As is consistent with the nature of a peptide, OT has some unfavorable characteristics: it has a short half-life in plasma and shows poor permeability across the blood-brain barrier. Analogs with long-lasting effects may overcome these drawbacks. To this end, we have synthesized three analogs: lipo-oxytocin-1 (LOT-1), in which two palmitoyl groups are conjugated to the cysteine and tyrosine residues, lipo-oxytocin-2 (LOT-2) and lipo-oxytocin-3 (LOT-3), which include one palmitoyl group conjugated at the cysteine or tyrosine residue, respectively. The following behavioral deficits were observed in CD38 knockout (CD38-/-) mice: a lack of paternal nurturing in CD38-/- sires, decreased ability for social recognition, and decreased sucrose consumption. OT demonstrated the ability to recover these disturbances to the level of wild-type mice for 30 min after injection. LOT-2 and LOT-3 partially recovered the behaviors for a short period. Conversely, LOT-1 restored the behavioral parameters, not for 30 min, but for 24 h. These data suggest that the lipidation of OT has some therapeutic benefits, and LOT-1 would be most useful because of its long-last activity.

20.
Pharmacol Res Perspect ; 5(1): e00290, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28596839

RESUMO

Oxytocin (OT) is a neuroendocrine nonapeptide that plays an important role in social memory and behavior. Nasal administration of OT has been shown to improve trust in healthy humans and social interaction in autistic subjects in some clinical trials. As a central nervous system (CNS) drug, however, OT has two unfavorable characteristics: OT is short-acting and shows poor permeability across the blood-brain barrier, because it exists in charged form in the plasma and has short half-life. To overcome these drawbacks, an analog with long-lasting effects is required. We previously synthesized the analog, lipo-oxytocin-1 (LOT-1), in which two palmitoyl groups are conjugated to the cysteine and tyrosine residues. In this study, we synthesized and evaluated the analogs lipo-oxytocin-2 (LOT-2) and lipo-oxytocin-3 (LOT-3), which feature the conjugation of one palmitoyl group at the cysteine and tyrosine residues, respectively. In human embryonic kidney-293 cells overexpressing human OT receptors, these three LOTs demonstrated comparably weak effects on the elevation of intracellular free calcium concentrations after OT receptor activation, compared to the effects of OT. The three LOTs and OT exhibited different time-dependent effects on recovery from impaired pup retrieval behavior in sires of CD38-knockout mice. Sires treated with LOT-1 showed the strongest effect, whereas others had no or little effects at 24 h after injection. These results indicated that LOTs have structure-specific agonistic effects, and suggest that lipidation of OT might have therapeutic benefits for social impairment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA