Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Control Release ; 367: 877-891, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301930

RESUMO

To facilitate the introduction of proteins, such as antibodies, into cells, a variety of delivery peptides have been engineered. These peptides are typically highly cationic and somewhat hydrophobic, enabling cytosolic protein delivery at the cost of causing cell damage by rupturing membranes. This balance between delivery effectiveness and cytotoxicity presents obstacles for their real-world use. To tackle this problem, we designed a new endosome-disruptive cytosolic delivery peptide, E3MPH16, inspired by mastoparan X (MP). E3MPH16 was engineered to incorporate three Glu (E3) and 16 His (H16) residues at the N- and C-termini of MP, respectively. The negative charges of E3 substantially mitigate the cell-surface damage induced by MP. The H16 segment is known to enhance cell-surface adsorption and endocytic uptake of the associated molecules. With these modifications, E3MPH16 was successfully trapped within endosomes. The acidification of endosomes is expected to protonate the side chains of E3 and H16, enabling E3MPH16 to rupture endosomal membranes. As a result, nearly 100% of cells achieved cytosolic delivery of a model biomacromolecule, Alexa Fluor 488-labeled dextran (10 kDa), via endosomal escape by co-incubation with E3MPH16. The delivery process also suggested the involvement of macropinocytosis and caveolae-mediated endocytosis. With the assistance of E3MPH16, Cre recombinase and anti-Ras-IgG delivered into HEK293 cells and HT1080 cells enabled gene recombination and inhibited cell proliferation, respectively. The potential for in vivo application of this intracellular delivery method was further validated by topically injecting the green fluorescent protein fused with a nuclear localization signal (NLS-GFP) along with E3MPH16 into Colon-26 tumor xenografts in mice.


Assuntos
Endocitose , Peptídeos , Humanos , Animais , Camundongos , Células HEK293 , Peptídeos/química , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo
2.
Adv Healthc Mater ; 11(23): e2201440, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36103662

RESUMO

Soft tissue regeneration remains a challenge in reconstructive surgery. So far, both autologous fat implantations and artificial implants methods used in clinical applications lead to various disadvantages and limited lifespan. To overcome these limitations and improve the graft volume maintenance, reproducing a mature adipose tissue already including vasculature structure before implantation can be the solution. Therefore, injectable prevascularized adipose tissues (iPAT) are made from physiological collagen microfibers mixed with human mature adipocytes, adipose-derived stem cells, and human umbilical vein endothelial cells, embedded in fibrin gel. Following murine subcutaneous implantation, the iPAT show a higher cell survival (84% ± 6% viability) and volume maintenance after 3 months (up to twice heavier) when compared to non-prevascularized balls and liposuctioned fat implanted controls. This higher survival can be explained by the greater amount of blood vessels found (up to 1.6-fold increase), with balanced host anastomosis (51% ± 1% of human/mouse lumens), also involving infiltration by the lymphatic and neural vasculature networks. Furthermore, with the cryopreservation possibility enabling their later reinjection, the iPAT technology has the merit to allow noninvasive soft tissue regeneration for long-term outcomes.


Assuntos
Tecido Adiposo , Células Endoteliais , Humanos , Animais , Camundongos
3.
Drug Metab Pharmacokinet ; 47: 100469, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36174354

RESUMO

We constructed tumor spheroids with a perfusable vascular network to assess drug delivery systems that target the tumor vasculature. A tricultured tumor spheroid containing human umbilical vein endothelial cells (HUVECs) was placed in the central compartment of a microfluidic device, and the HUVECs were seeded into the microslit channels on both sides. Angiogenic sprouts began to form within a few days, from both the tumor spheroids and microchannels, and became more abundant and branched, while attracting each other, over time. A continuous vascular network of HUVECs was fully formed on Day 7. The uptake of 3'-(1-carboxy)ethyl sialyl Lewis X mimic (3'-CE sLeX mimic) liposomes, which have previously been proven to recognize E-selectin, in vascular-perfusable tumor spheroids was assessed. 3'-CE sLeX mimic and pegylated liposomes were rarely taken up, but when the vascular network was pretreated with TNF-α and IL-1ß, 3'-CE sLeX mimic liposomes accumulated considerably more in endothelial cells and their vicinity. Taken together, along with the known in vivo expression of E-selectin in tumor angiogenic blood vessels, these results suggest that 3'-CE sLeX mimic liposomes are a promising carrier for targeting tumor vasculature. Furthermore, proinflammatory cytokine treatment may be appropriate for use with vascular-perfusable tumor spheroids in pharmacokinetic studies.


Assuntos
Selectina E , Neoplasias , Humanos , Selectina E/metabolismo , Lipossomos , Células Endoteliais/metabolismo , Oligossacarídeos/metabolismo
4.
Yakugaku Zasshi ; 141(5): 661-665, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33952748

RESUMO

Although the concept of a drug delivery system (DDS) is usually applied to conventional drug therapy, it is also important for cell-based therapy. The surface manipulation of living cells represents a powerful tool for controlling cell behaviors in the body, such as enhancement of cell-cell interactions, targeted delivery of cells, and protection from immunological rejection. Functional groups, including amines, thiols, and carbonyls, offer excellent opportunities for chemical modification through the formation of covalent bonds with exogenous molecules. Non-natural reactive groups introduced by metabolic labeling were recently utilized for targeted chemical modification. On the other hand, noncovalent strategies are also available; two major examples are electrostatic interaction with a negative charge on the cell surface and hydrophobic insertion or interaction with the cell membrane. In this study, we analyzed factors affecting cell surface modifications using PEG-lipid and succeeded in enhancing the efficacy of modification by cyclodextrin. Then, mesenchymal stem cells (MSCs), whose therapeutic effect has been demonstrated at the clinical stage and which have been clinically used as a drug, were decorated with PEG-lipid conjugates having a targeted ligand such as peptide or scFv, which are recognized by ICAM1. The peptide or scFv decoration enhanced the cell adhesion of MSCs on cytokine treated-endothelial cells. This technique will prompt the targeted delivery of MSCs to intended therapy sites, and underscores the promise of cell surface engineering as a tool for improving cell-based therapy.


Assuntos
Membrana Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Sistemas de Liberação de Medicamentos , Adesão Celular , Comunicação Celular , Engenharia Celular , Membrana Celular/metabolismo , Ciclodextrinas/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Molécula 1 de Adesão Intercelular/fisiologia , Células-Tronco Mesenquimais , Polietilenoglicóis , Eletricidade Estática
5.
Leukemia ; 34(9): 2405-2417, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32089543

RESUMO

In classical Hodgkin lymphoma (cHL)-characterized by the presence of Hodgkin and Reed-Sternberg (HRS) cells-tumor-associated macrophages (TAMs) play a pivotal role in tumor formation. However, the significance of direct contact between HRS cells and TAMs has not been elucidated. HRS cells and TAMs are known to express PD-L1, which leads to PD-1+ CD4+ T cell exhaustion in cHL. Here, we found that PD-L1/L2 expression was elevated in monocytes co-cultured with HRS cells within 1 h, but not in monocytes cultured with supernatants of HRS cells. Immunofluorescence analysis of PD-L1/L2 revealed that their upregulation resulted in membrane transfer called "trogocytosis" from HRS cells to monocytes. PD-L1/L2 upregulation was not observed in monocytes co-cultured with PD-L1/L2-deficient HRS cells, validating the hypothesis that there is a direct transfer of PD-L1/L2 from HRS cells to monocytes. In the patients, both ligands (PD-L1/L2) were upregulated in TAMs in contact with HRS cells, but not in TAMs distant from HRS cells, suggesting that trogocytosis occurs in cHL patients. Taken together, trogocytosis may be one of the mechanisms that induces rapid upregulation of PD-L1/L2 in monocytes to evade antitumor immunity through the suppression of T cells as mediated by MHC antigen presentation.


Assuntos
Antígeno B7-H1/metabolismo , Doença de Hodgkin/metabolismo , Monócitos/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Doença de Hodgkin/imunologia , Doença de Hodgkin/patologia , Humanos , Complexo Principal de Histocompatibilidade/imunologia , Microambiente Tumoral/imunologia
6.
No Shinkei Geka ; 47(10): 1037-1043, 2019 Oct.
Artigo em Japonês | MEDLINE | ID: mdl-31666419

RESUMO

BACKGROUND: Device-related infection frequently becomes a serious problem after deep brain stimulation(DBS)surgery and DBS device removal is usually the only effective treatment option. In this study, we examined risk factors for infection related to DBS devices at our institution. METHODS: We retrospectively investigated 80 DBS surgeries performed between March 2009 and September 2017 at our institution. We examined the relationship between DBS device-related infection and the following items:duration of electrode placement surgery, total number of tracks of microelectrode recordings(MER), period between surgeries, highest body temperature until implantable pulse generator(IPG)implantation, and patient background characteristics. RESULTS: Four(5.0%)patients developed device-related infection after DBS surgery. Three of them required device removal, whereas one improved following antibiotic treatment alone. We did not identify any specific trend or risk factor for infection. DISCUSSION: We perform DBS surgery in two stages. Patients were implanted with an IPG 2-3 days after electrode placement until August 2016, and at 6-8 days starting in September 2016. All cases of infection developed before September 2016, and no cases of infection have occurred since September 2016. We believe that lengthy surgical electrode placement affects the general status of patients and performing surgery before stabilization might confer a risk of infection. CONCLUSION: Device-related infection after DBS surgery does not seem to be associated with any risk factors. However, a shorter period between two-staged surgeries might affect infection rates.


Assuntos
Estimulação Encefálica Profunda , Antibacterianos , Eletrodos Implantados , Humanos , Estudos Retrospectivos , Fatores de Risco
7.
Biochim Biophys Acta Mol Cell Res ; 1866(2): 190-198, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391277

RESUMO

In resting cells, the nuclear factor kappa B (NF-κB) family of transcription factors is stabilized by complexation with the cytoplasmic inhibitor of kappa B alpha (IκBα). Extracellular stimuli, such as tumor necrosis factor alpha (TNFα) or bacterial lipopolysaccharide activate NF-κB through IκBα phosphorylation and ubiquitin-proteasomal degradation. Herein, we developed a novel biosensor, by fusing the monomeric fluorescent protein Kusabira-Orange 2 to IκBα (mKO2-IκBα), to study the dynamics and structure-activity relationship of IκBα degradation. Site-specific deletion studies on the IκBα sequence revealed that the C-terminal PEST domain is required in signal-induced proteasomal degradation of IκBα and functions independently from ankyrin repeats. Using deletion mutants, we show that IκBα ankyrin repeats do not affect IκBα degradability but affect its degradation rate. We demonstrate, by both real-time confocal microscopy and western blot analysis, that the half-life of mKO2-IκBα in response to TNFα is approximately 35 min, which is similar to the half-life of endogenous IκBα. Using this biosensor we also show that selective proteasome inhibitors, such as lactacystin and MG132, inhibit degradation and affect the kinetics of IκBα in a dose-dependent manner. The techniques described here can have a range of possible applications, such as facilitating studies associated with IκBα dynamics and biochemical characteristics, as well as the screening of potential proteasome inhibitors.


Assuntos
Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/fisiologia , Anquirinas/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Corantes Fluorescentes , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , Proteínas I-kappa B/fisiologia , Proteínas Luminescentes , NF-kappa B/metabolismo , NF-kappa B/fisiologia , Imagem Óptica/métodos , Fosforilação , Engenharia de Proteínas/métodos , Proteólise , Sequências Repetitivas de Ácido Nucleico , Transdução de Sinais , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/fisiologia , Ubiquitinação , Proteína Vermelha Fluorescente
8.
Biol Pharm Bull ; 40(4): 540-545, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28381810

RESUMO

Glycosaminoglycans (GAGs) play important roles in various biological processes such as cell adhesion and signal transduction, as well as promote anti-inflammatory activity. We previously revealed that glycol-split heparin (HP)-aliphatic amine conjugates form self-assembled nanoparticles and suppress the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß in lipopolysaccharide (LPS)-stimulated macrophages much more strongly than native HP (J. CONTROL: Release, 194, 2014, Babazada et al.). Considering that HP is not the only GAG to have anti-inflammatory activity, the present study was initiated to examine whether conjugation of GAGs with aliphatic amines is generally effective in their activity augmentation against LPS-stimulated macrophages. We newly synthesized the stearylamine conjugates of chondroitin sulfate (CS), hyaluronic acid (HA), and low-molecular-weight heparin (LH), and investigated the effect of the position and degree of sulfation and molecular weight of GAGs on their anti-inflammatory activity. All of the conjugates formed self-assembled nanoparticles in aqueous solution. The IC50 value for suppression of TNF-α production from the macrophages was the smallest with the derivative of LH, followed by HP, CS, and HA. The degree of sulfation appeared to be important in determining their anti-inflammatory activity, which would correspond to previous results using the derivatives of site-selectively desulfated HP. Comparison of HP and LH derivatives revealed that fractionated smaller heparin has greater anti-inflammatory activity.


Assuntos
Aminas/farmacologia , Anti-Inflamatórios/farmacologia , Glicosaminoglicanos/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/metabolismo , Aminas/química , Animais , Anti-Inflamatórios/química , Relação Dose-Resposta a Droga , Glicóis/química , Glicóis/farmacologia , Glicosaminoglicanos/química , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos
9.
Mol Pharm ; 14(5): 1528-1537, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28191842

RESUMO

Sialyl LewisX (sLeX) is a natural ligand of E-selectin that is overexpressed by inflamed and tumor endothelium. Although sLeX is a potential ligand for drug targeting, synthesis of the tetrasaccharide is complicated with many reaction steps. In this study, structurally simplified novel sLeX analogues were designed and linked with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG) for E-selectin-mediated liposomal delivery. The sLeX structural simplification strategies include (1) replacement of the Gal-GlcNAc disaccharide unit with lactose to reduce many initial steps and (2) substitution of neuraminic acid with a negatively charged group, i.e., 3'-sulfo, 3'-carboxymethyl (3'-CM), or 3'-(1-carboxy)ethyl (3'-CE). While all the liposomes developed were similar in particle size and charge, the 3'-CE sLeX mimic liposome demonstrated the highest uptake in inflammatory cytokine-treated human umbilical vein endothelial cells (HUVECs), being even more potent than native sLeX-decorated liposomes. Inhibition studies using antiselectin antibodies revealed that their uptake was mediated primarily by overexpressed E-selectin on inflamed HUVECs. Molecular dynamics simulations were performed to gain mechanistic insight into the E-selectin binding differences among native and mimic sLeX. The terminally branched methyl group of the 3'-CE sLeX mimic oriented and faced the bulk hydrophilic solution during E-selectin binding. Since this state is entropically unfavorable, the 3'-CE sLeX mimic molecule might be pushed toward the binding pocket of E-selectin by a hydrophobic effect, leading to a higher probability of hydrogen-bond formation than native sLeX and the 3'-CM sLeX mimic. This corresponded with the fact that the 3'-CE sLeX mimic liposome exhibited much greater uptake than the 3'-CM sLeX mimic liposome.


Assuntos
Selectina E/química , Células Endoteliais/metabolismo , Lipossomos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipossomos/metabolismo , Simulação de Dinâmica Molecular
10.
Drug Deliv ; 24(1): 320-327, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28165819

RESUMO

In this study, stable nano-sized bubbles (nanobubbles [NBs]) were produced using the mechanical agitation method in the presence of perfluorocarbon gases. NBs made with perfluoropropane had a smaller size (around 400 nm) compared to that of those made with perfluorobutane or nitrogen gas. The lipid concentration in NBs affected both their initial size and post-formulation stability. NBs formed with a final lipid concentration of 0.5 mg/ml tended to be more stable, having a uniform size distribution for 24 h at room temperature and 50 h at 4 °C. In vitro gene expression revealed that NBs/pDNA in combination with ultrasound (US) irradiation had significantly higher transfection efficacy in colon C26 cells. Moreover, for in vivo gene transfection in mice left limb muscles, there was notable local transfection activity by NBs/pDNA when combined with US irradiation. In addition, the aged NBs kept at room temperature or 4 °C were still functional at enhancing gene transfection in mice. We succeeded in preparing stable NBs for efficient in vivo gene transfection, using the mechanical agitation method.


Assuntos
DNA/química , Fluorocarbonos/química , Fenômenos Mecânicos , Nanopartículas/química , Transfecção/métodos , Ondas Ultrassônicas , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , DNA/administração & dosagem , Feminino , Fluorocarbonos/administração & dosagem , Terapia Genética/métodos , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/administração & dosagem , Tamanho da Partícula , Plasmídeos/administração & dosagem , Plasmídeos/química
11.
J Pharm Sci ; 106(3): 792-802, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27989368

RESUMO

Single-walled carbon nanotubes (SWCNTs) attract great interest in biomedical fields including application for drug delivery system. In this study, we developed a novel gene delivery system employing SWCNTs associated with polycationic and amphiphilic H-(-Lys-Trp-Lys-Gly-)7-OH [(KWKG)7] peptides having pegylation. SWCNTs wrapped with (KWKG)7 formed a complex with plasmid DNA (pDNA) in aqueous solution based on polyionic interaction but later underwent aggregation. On the other hand, a complex of pDNA and SWCNT-(KWKG)7 modified with polyethylene glycol (PEG) chains of 12 units [SWCNT-(KWKG)7-(PEG)12] afforded good dispersion stability for 24 h even in a cell culture medium. The in vitro cellular uptake of SWCNT-(KWKG)7-(PEG)12/pDNA complex prepared with fluorescence-labeled pDNA was evaluated with fluorescent microscopic observation and flow cytometry. The uptake by A549 human lung adenocarcinoma epithelial cells increased along with the extent of pegylation, suggesting the importance of dispersion stability in addition to the cationic charge which facilitates ionic cellular interaction. The expression of pDNA encoding the monomeric Kusabira-Orange 2 fluorescent protein in the form of the SWCNT-(KWKG)7-(PEG)12/pDNA complex demonstrated remarkable enhancement of transfection depending also on the extent of pegylation and the N/P ratio. The potential of the SWCNT composite wrapped with polycationic and amphiphilic (KWKG)7 with pegylation as a carrier for gene delivery was demonstrated.


Assuntos
Técnicas de Transferência de Genes , Nanotubos de Carbono/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Polietilenoglicóis/química , Células A549 , Eletroforese em Gel Bidimensional/métodos , Humanos , Fragmentos de Peptídeos/administração & dosagem , Polietilenoglicóis/administração & dosagem
12.
ACS Nano ; 9(5): 4957-67, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25880444

RESUMO

Occult nodal metastases increase the risk of cancer recurrence, demoting prognosis and quality of life of patients. While targeted drug delivery by using systemically administered nanocarriers can potentially control metastatic disease, lymph node metastases have been mainly dealt by locally injecting nanocarriers, which may not always be applicable. Herein, we demonstrated that sub-50 nm polymeric micelles incorporating platinum anticancer drugs could target lymph node metastases in a syngeneic melanoma model after systemic injection, even after removing the primary tumors, limiting the growth of the metastases. By comparing these micelles with clinically used doxorubicin-loaded liposomes (Doxil) having 80 nm, as well as a 70 nm version of the micelles, we found that the targeting efficiency of the nanocarriers against lymph node metastases was associated with their size-regulated abilities to extravasate from the blood vasculature in metastases and to penetrate within the metastatic mass. These findings indicate the potential of sub-50 nm polymeric micelles for developing effective conservative treatments against lymph node metastasis capable of reducing relapse and improving survival.


Assuntos
Portadores de Fármacos/química , Vasos Linfáticos/metabolismo , Nanomedicina/métodos , Nanopartículas/química , Tamanho da Partícula , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Lipossomos , Linfonodos/metabolismo , Metástase Linfática , Melanoma Experimental/patologia , Camundongos , Micelas , Compostos Organoplatínicos/química , Polietilenoglicóis/química
13.
Int J Pharm ; 487(1-2): 64-71, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25841568

RESUMO

Nano-/microbubbles are expected not only to function as ultrasound contrast agents but also as ultrasound-triggered enhancers in gene and drug delivery. Notably, nanobubbles have the ability to pass through tumor vasculature and achieve passive tumor targeting. Thus, nanobubbles would be an attractive tool for use as ultrasound-mediated cancer theranostics. However, the amounts of gas carried by nanobubbles are generally lower than those carried by microbubbles because nanobubbles have inherently smaller volumes. In order to reduce the injection volume and to increase echogenicity, it is important to develop nanobubbles with higher gas content. In this study, we prepared 5 kinds of fluoro-lipids and used these reagents as surfactants to generate "Bubble liposomes", that is, liposomes that encapsulate nanobubbles such that the lipids serve as stabilizers between the fluorous gas and water phases. Bubble liposome containing 1-stearoyl-2-(18,18-difluoro)stearoyl-sn-glycero-3-phosphocholine carried 2-fold higher amounts of C3F8 compared to unmodified Bubble liposome. The modified Bubble liposome also exhibited increased echogenicity by ultrasonography. These results demonstrated that the inclusion of fluoro-lipid is a promising tool for generating nanobubbles with increased efficiency of fluorous gas carrier.


Assuntos
Fluorocarbonos/administração & dosagem , Lipossomos/química , Microbolhas , Meios de Contraste , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Fluorocarbonos/química , Gases/administração & dosagem , Tamanho da Partícula , Fosfolipídeos/química , Ultrassonografia
14.
Int J Pharm ; 475(1-2): 401-7, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25218184

RESUMO

A method involving the use of doxorubicin-loaded polyethylene-glycol-modified liposomes and transfection using mannose-modified bubble lipoplexes in combination with ultrasound irradiation may be a promising approach to cancer treatment; it could not only suppress early-stage tumor growth but also enhance transfection efficacy in antigen-presenting cells, thus enhancing the therapeutic potential of a DNA vaccine. However, to date only limited research has been carried out regarding this combination DNA vaccination method for use in cancer therapy. In this study, we examined the anti-tumor effect of DNA vaccination using an ultrasound-responsive mannose-modified gene carrier combined with doxorubicin-encapsulated polyethylene-glycol-modified liposomes. Doxorubicin-encapsulated PEGylated liposomes activated transcriptional factors, such as nuclear factor-κB and AP-1 in the spleen; subsequently pUb-M, ubiquitylated melanoma-related antigen encoding plasmid DNA expression in splenic cells was significantly enhanced. Moreover, effective cytotoxic T-lymphocyte activities were stimulated by DNA vaccination combined with the administration of doxorubicin-encapsulated polyethylene-glycol-modified liposomes. Furthermore, potent DNA vaccine effects against established solid tumor and metastatic tumor derived from B16BL6 melanoma were observed. These results suggest that the combined use of DNA vaccination with doxorubicin-encapsulated polyethylene-glycol-modified liposomes could be an effective method for the treatment of melanoma using immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/análogos & derivados , Melanoma/tratamento farmacológico , Linfócitos T Citotóxicos/imunologia , Terapia por Ultrassom/métodos , Vacinas de DNA/farmacologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Manose/química , Melanoma/imunologia , Camundongos , NF-kappa B/biossíntese , Plasmídeos , Polietilenoglicóis/farmacologia , RNA Mensageiro , Fator de Transcrição AP-1/biossíntese , Ativação Transcricional/imunologia , Transfecção
15.
Cancer Sci ; 105(8): 1049-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850474

RESUMO

Patients with malignant ascites (MAs) display several symptoms, such as dyspnea, nausea, pain, and abdominal tenderness, resulting in a significant reduction in their quality of life. Tumor-associated macrophages (TAMs) play a crucial role in MA progression. Because TAMs have a tumor-promoting M2 phenotype, conversion of the M2 phenotypic function of TAMs would be promising for MA treatment. Nuclear factor-κB (NF-κB) is a master regulator of macrophage polarization. Here, we developed targeted transfer of a NF-κB decoy into TAMs by ultrasound (US)-responsive, mannose-modified liposome/NF-κB decoy complexes (Man-PEG bubble lipoplexes) in a mouse peritoneal dissemination model of Ehrlich ascites carcinoma. In addition, we investigated the effects of NF-κB decoy transfection into TAMs on MA progression and mouse survival rates. Intraperitoneal injection of Man-PEG bubble lipoplexes and US exposure transferred the NF-κB decoy into TAMs effectively. When the NF-κB decoy was delivered into TAMs by this method in the mouse peritoneal dissemination model, mRNA expression of the Th2 cytokine interleukin (IL)-10 in TAMs was decreased significantly. In contrast, mRNA levels of Th1 cytokines (IL-12, tumor necrosis factor-α, and IL-6) were increased significantly. Moreover, the expression level of vascular endothelial growth factor in ascites was suppressed significantly, and peritoneal angiogenesis showed a reduction. Furthermore, NF-κB decoy transfer into TAMs significantly decreased the ascitic volume and number of Ehrlich ascites carcinoma cells in ascites, and prolonged mouse survival. In conclusion, we transferred a NF-κB decoy efficiently by Man-PEG bubble lipoplexes with US exposure into TAMs, which may be a novel approach for MA treatment.


Assuntos
Carcinoma de Ehrlich , Terapia Genética/métodos , Macrófagos/metabolismo , Oligodesoxirribonucleotídeos/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Lectinas Tipo C/metabolismo , Lipossomos , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , NF-kappa B/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/metabolismo , Transfecção/métodos , Ultrassom
16.
J Drug Target ; 22(8): 732-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24830302

RESUMO

Development of an efficient small interfering RNA (siRNA) delivery method using non-viral carriers is necessary to determine potent therapeutic effects of RNA interference. Inflammatory responses induced by siRNA interaction with Toll-like receptors and retinoic-acid-inducible gene I protein/melanoma differentiation-associated gene 5 (RIG-I/MDA-5) are obstacles to the application of siRNAs in clinically. Here, we evaluated the effects on inflammatory responses by our siRNA delivery method using bubble lipoplexes with ultrasound (US) exposure in cultured macrophages. The effective gene suppression effects were obtained under low-toxic conditions in this siRNA transfer method. The interferon (IFN)-α after siRNA transfer using lipoplexes/bubble lipoplexes with US exposure was not detected. However, low levels of type I IFN mRNA production were induced through interaction of siRNA and cytoplasmic RIG-I/MDA-5, but not Toll-like receptors. Our findings indicate that it is possible to develop a safe and efficient siRNA delivery technique using mannosylated bubble lipoplexes and US exposure.


Assuntos
Inflamação/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Manose/química , Animais , Células Cultivadas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Regulação da Expressão Gênica , Helicase IFIH1 Induzida por Interferon , Interferon-alfa/genética , Interferon-alfa/metabolismo , Lipossomos/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Receptores de Superfície Celular , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Transfecção/métodos , Ultrassom
17.
J Drug Target ; 22(5): 439-49, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24579693

RESUMO

Tumour-associated macrophages (TAM) exhibit an M2 phenotype that promotes tumour progression, and conversion of M2 TAM toward a tumouricidal M1 phenotype is a promising anti-cancer therapy. As NF-κB is a key regulator of macrophage polarization, we developed an in vivo TAM-targeting delivery system that combines mannose-modified bubble liposomes/NF-κB decoy complexes (Man-PEG bubble lipoplexes) and ultrasound (US) exposure. We investigated the effects of NF-κB decoy transfection on TAM phenotype in solid tumour-bearing mice. Post-transfection tumour growth and survival rates were also recorded. Th2 cytokine (IL-10) level in TAM was significantly lower by NF-κB decoy transfection using Man-PEG bubble lipoplexes and US exposure, while Th1 cytokine levels (IL-1ß, TNF-α and IL-6) were significantly higher when compared with controls. In addition, mRNA levels of vascular endothelial growth factor, matrix metalloproteinase-9 and arginase were significantly lower in TAM post-NF-κB decoy transfection. Importantly, TAM-targeted NF-κB decoy transfection inhibited tumour growth and prolonged survival rates in mice. Therefore, TAM-targeted NF-κB decoy transfection using Man-PEG bubble lipoplexes and US exposure may be an effective approach for anti-cancer therapy based on TAM phenotypic conversion from M2 toward M1.


Assuntos
Neoplasias do Colo/terapia , Portadores de Fármacos/química , Macrófagos/metabolismo , Manose/química , Oligodesoxirribonucleotídeos/genética , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Feminino , Técnicas de Transferência de Genes , Lipossomos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Polietilenoglicóis/química , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sobrevida , Transfecção , Ultrassom
18.
Biol Pharm Bull ; 37(1): 137-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24141263

RESUMO

Tumor-associated macrophages (TAMs) have an alternatively activated macrophage phenotype (M2) and promote cancer cell proliferation, angiogenesis and metastasis. Nuclear factor-kappaB (NF-κB) is one of the master regulators of macrophage polarization. Here, we investigated the effect of inhibition of NF-κB activity by small interfering RNA (siRNA) on the pro-tumor response of macrophages located in the tumor microenvironment in vitro. We used mouse peritoneal macrophages cultured in conditioned medium from colon-26 cancer cells as an in vitro TAM model (M2-like macrophages). Transfection of NF-κB (p50) siRNA into M2-like macrophages resulted in a significant decrease in the secretion of interleukin (IL)-10 (a T helper 2 (Th2) cytokine) and a significant increase of T helper 1 (Th1) cytokine production (IL-12, tumor necrosis factor-α, and IL-6). Furthermore, vascular endothelial growth factor production and matrix metalloproteinase-9 mRNA expression in M2-like macrophages were suppressed by inhibition of NF-κB expression with NF-κB (p50) siRNA. In addition, there was a reduction of arginase mRNA expression and increase in nitric oxide production. The cytokine secretion profiles of macrophages cultured in conditioned medium from either B16BL6 or PAN-02 cancer cells were also converted from M2 to classically activated (M1) macrophages by transfection of NF-κB (p50) siRNA. These results suggest that inhibition of NF-κB activity in M2-like macrophages alters their phenotype toward M1.


Assuntos
Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos/metabolismo , NF-kappa B/antagonistas & inibidores , Neovascularização Patológica , RNA Interferente Pequeno/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Interleucinas/metabolismo , Lipopolissacarídeos , Ativação de Macrófagos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Th1/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Biol Pharm Bull ; 36(11): 1731-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24189418

RESUMO

Artificial introduction of functional molecules on the cell surface may be a promising way to improve the therapeutic effects of cell therapy. Pegylated lipids are conventionally used in drug carriers. The lipid part of pegylated lipids noncovalently interacts with the cell surface. However, little information is available regarding conditions for cell-surface modification by using pegylated lipids. In this study, we synthesized fluorescein-labeled pegylated lipids and evaluated the factors that affect modification efficiency by using human mesenchymal stem cells (hMSCs). As the concentration of the pegylated lipid as well as the exposure time increased, the modification efficiency increased. The modification efficiency at 37°C was 20- and 3-fold higher than that at 4°C and 25°C, respectively. In addition, with an increase in the molecular weight of polyethylene glycol (PEG), more pegylated lipids were extracellularly distributed than those intracellularly distributed. At the optimal condition, pegylated lipids were observed mainly on the cell membrane by confocal microscopy. In contrast, the cell condition (adherent or nonadherent) had little or no effect on the cell-surface modification efficiency. The results of this study will be useful for constructing an optimal modification method for introducing functional molecules on the cell surface.


Assuntos
Fluoresceína/química , Células-Tronco Mesenquimais/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fluoresceína/toxicidade , Humanos , Fosfatidiletanolaminas/toxicidade , Polietilenoglicóis/toxicidade , Propriedades de Superfície
20.
Nat Commun ; 3: 1262, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23232392

RESUMO

The use of fluorescent proteins has revolutionized our understanding of biological processes. However, the requirement for external illumination precludes their universal application to the study of biological processes in all tissues. Although light can be created by chemiluminescence, light emission from existing chemiluminescent probes is too weak to use this imaging modality in situations when fluorescence cannot be used. Here we report the development of the brightest luminescent protein to date, Nano-lantern, which is a chimera of enhanced Renilla luciferase and Venus, a fluorescent protein with high bioluminescence resonance energy transfer efficiency. Nano-lantern allows real-time imaging of intracellular structures in living cells with spatial resolution equivalent to fluorescence and sensitive tumour detection in freely moving unshaved mice. We also create functional indicators based on Nano-lantern that can image Ca(2+), cyclic adenosine monophosphate and adenosine 5'-triphosphate dynamics in environments where the use of fluorescent indicators is not feasible. These luminescent proteins allow visualization of biological phenomena at previously unseen single-cell, organ and whole-body level in animals and plants.


Assuntos
Células/ultraestrutura , Luciferases , Proteínas Luminescentes , Proteínas Recombinantes de Fusão , Imagem Corporal Total/métodos , Trifosfato de Adenosina/metabolismo , Animais , Arabidopsis , Proteínas de Bactérias , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , AMP Cíclico/metabolismo , Células HeLa/ultraestrutura , Humanos , Luciferases de Renilla , Luminescência , Medições Luminescentes/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Dados de Sequência Molecular , Nanoestruturas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA