Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 649: 1-9, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738577

RESUMO

Aggressive cancers, such as triple-negative breast cancer (TNBC), are mostly fatal because of their potential to metastasize to distant organs. Cancer cells acquire various abilities to metastasize, including resistance to anoikis, an apoptotic cell death induced by loss of anchorage to the extracellular matrix. Transcriptional coactivator with PDZ binding motif (TAZ) and Yes-associated protein (YAP), the downstream effectors of the Hippo pathway, regulate cell- and tissue-level architectures by responding to mechanical microenvironments of cells, including the cell-extracellular matrix interaction. The Hippo pathway is frequently disrupted in cancer cells, and TAZ and YAP are irrelevantly activated, potentially resulting in anchorage-independent survival/proliferation of cancer cells and metastatic progression. The study aims to investigate the roles of TAZ and YAP in anoikis resistance in basal-like (BL) TNBC cells, which comprise a major subtype (>70%) of TNBC. We found that TAZ and YAP had nonredundant roles in anchorage-independent cancer cell survival or anoikis resistance. Particularly, TAZ was indispensable for anoikis resistance in BL-TNBC cells but not for survival of non-transformed mammary epithelial cells (MECs). In contrast, YAP, a paralog of TAZ, was indispensable for survival of both non-transformed MECs and cancer cells. Therefore, TAZ might be a preferable therapeutic target against dissemination of aggressive cancer cells without killing normal cells. Interestingly, TAZ was abnormally stabilized in BL-TNBC cells under non-adherent conditions, which promoted anoikis resistance. Furthermore, OTUB1, a deubiquitinating enzyme, was responsible for the stabilization of TAZ in detached BL-TNBC cells. Importantly, simultaneous high expression of TAZ and OTUB1 was associated with poor prognosis in BC. Thus, OTUB1 has emerged as a potentially druggable target. Successful inhibition of OTUB1 enzymatic activity is expected to downregulate TAZ and eventually prevents metastasis of aggressive cancers, such as BL-TNBC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias de Mama Triplo Negativas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anoikis/fisiologia , Neoplasias de Mama Triplo Negativas/patologia , Proteínas de Sinalização YAP , Enzimas Desubiquitinantes/metabolismo , Microambiente Tumoral
2.
Cancer Sci ; 114(1): 152-163, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36102493

RESUMO

Recent comprehensive analyses of mtDNA and orthogonal RNA-sequencing data revealed that in numerous human cancers, mtDNA copy numbers and mtRNA amounts are significantly reduced, followed by low respiratory gene expression. Under such conditions (called mt-Low), cells encounter severe cell proliferation defects; therefore, they must acquire countermeasures against this fatal disadvantage during malignant transformation. This study elucidated a countermeasure against the mt-Low condition-induced antiproliferative effects in hepatocellular carcinoma (HCC) cells. The mechanism relied on the architectural transcriptional regulator HMGA2, which was preferably expressed in HCC cells of the mt-Low type in vitro and in vivo. Detailed in vitro analyses suggest that HMGA2 regulates insulin-like growth factor binding protein 1 (IGFBP1) expression, leading to AKT activation, which then phosphorylates the cyclin-dependent kinase inhibitor (CKI), P27KIP1, and facilitates its ubiquitin-mediated degradation. Accordingly, intervention in the HMGA2 function by RNAi resulted in an increase in P27KIP1 levels and an induction of senescence-like cell proliferation inhibition in mt-Low-type HCC cells. Conclusively, the HMGA2/IGFBP1/AKT axis has emerged as a countermeasure against P27KIP1 CKI upregulation under mt-Low conditions, thereby circumventing cell proliferation inhibition and supporting the tumorigenic state. Notably, similar to in vitro cell lines, HMGA2 was likely to regulate IGFBP1 expression in HCC in vivo, thereby contributing to poor patient prognosis. Considering the significant number of cases under mt-Low or the threat of CKI upregulation cancer-wide, the axis is noteworthy as a vulnerability of cancer cells or target for tumor-agnostic therapy inducing irreversible cell proliferation inhibition via CKI upregulation in a large population with cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , RNA , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/patologia , DNA Mitocondrial , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Proliferação de Células/genética , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
Cancer Sci ; 112(8): 3205-3217, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34036687

RESUMO

Previously, we reported that non-apoptotic cell death was induced in non-malignant mammary epithelial cells (HMECs) upon loss of anchorage during 48 h incubation in suspension. In this study, we examined HMECs in suspension at an earlier time point and found that most of them lost attachment ability to substrata when replated, although >80% were alive. This suggested that HMECs lost reattachment ability (RA) prior to cell death upon detachment. Concomitant with the loss of RA, a decrease in the levels of ß1 and ß4 integrin was observed. In sharp contrast, breast cancer cells retained integrin levels, reattached to substrata, and formed colonies after exposure to anchorage loss as efficiently as those maintained under adherent conditions. Such RA of cancer cells is essential for the metastatic process, especially for establishing adhesion contact with ECM in the secondary organ after systemic circulation. Further analysis suggested that sustained levels of ß4 integrin, which was mediated by Rac1, was critical for RA after anchorage loss and lung metastasis of breast cancer cells. In the cancer cells, persistent Rac1 activity enhanced escape of ß4 integrin from lysosomal degradation depending on actin-related protein 2/3 and TBC1D2, a GTPase-activating protein of Rab7 GTPase. Notably, simultaneous high expression of ITGB4 and RAC1 was associated with poor prognosis in patients with breast cancer. Therefore, ß4 integrin and Rac1 are attractive therapeutic targets to eliminate RA in cancer cells, thereby preventing the initial step of colonization at the secondary organ during metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Integrina beta4/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Proteínas rac1 de Ligação ao GTP/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lisossomos/metabolismo , Células MCF-7 , Prognóstico
4.
Exp Cell Res ; 389(1): 111889, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32032602

RESUMO

The copy number of mitochondrial DNA (mtDNA) is decreased in most cancer types, including hepatocellular carcinoma (HCC), compared to normal counterparts. However, a decrease in mtDNA usually leads to defects in cell proliferation, which contradicts the robustness of cancer cell proliferation. In this study, we found that four out of seven HCC cell lines were of the mtDNA-less type. Interestingly, FOXM1, a member of the FOX transcription factor family, was highly expressed in a subset of them with proliferative potential maintained. B-MYB, a partner of FOXM1, was also expressed in the same cell lines. RNAi-mediated experiments demonstrated that when FOXM1/B-MYB was silenced in the cell lines, cell cycle-related genes were downregulated, while p21Cip1 was induced with senescence-associated ß-galactosidase, resulting in G1/S cell cycle arrest. These results suggest that high expression of FOXM1/B-MYB is critical for sustaining cell proliferation in mtDNA-less cells. In addition, we found that high expression of FOXM1 was mediated by the deubiquitinating enzyme, OTUB1, in one cell line. Thus, interference with FOXM1/B-MYB expression, such as through OTUB1 inhibition, may induce a dormant state of senescence-like proliferation arrest in mtDNA-less cancer cells. This finding may be utilized for the development of precision medicine for relevant cancers.


Assuntos
Carcinoma Hepatocelular/genética , Proliferação de Células/genética , DNA Mitocondrial/genética , Proteína Forkhead Box M1/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Cultivadas , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/patologia , Regulação para Cima/genética
5.
Cancer Sci ; 107(7): 963-71, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27094710

RESUMO

Mitochondria are multifunctional organelles; they have been implicated in various aspects of tumorigenesis. In this study, we investigated a novel role of the basal electron transport chain (ETC) activity in cell proliferation by inhibiting mitochondrial replication and transcription (mtR/T) using pharmacological and genetic interventions, which depleted mitochondrial DNA/RNA, thereby inducing ETC deficiency. Interestingly, mtR/T inhibition did not decrease ATP levels despite deficiency in ETC activity in different cell types, including MDA-MB-231 breast cancer cells, but it severely impeded cell cycle progression, specifically progression during G2 and/or M phases in the cancer cells. Under these conditions, the expression of a group of cell cycle regulators was downregulated without affecting the growth signaling pathway. Further analysis suggested that the transcriptional network organized by E2F1 was significantly affected because of the downregulation of E2F1 in response to ETC deficiency, which eventually resulted in the suppression of cell proliferation. Thus, in this study, the E2F1-mediated ETC-dependent mechanism has emerged as the regulatory mechanism of cell cycle progression. In addition to E2F1, FOXM1 and BMYB were also downregulated, which contributed specifically to the defects in G2 and/or M phase progression. Thus, ETC-deficient cancer cells lost their growing ability, including their tumorigenic potential in vivo. ETC deficiency abolished the production of reactive oxygen species (ROS) from the mitochondria and a mitochondria-targeted antioxidant mimicked the deficiency, thereby suggesting that ETC activity signaled through ROS production. In conclusion, this novel coupling between ETC activity and cell cycle progression may be an important mechanism for coordinating cell proliferation and metabolism.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fator de Transcrição E2F1/metabolismo , Redes Reguladoras de Genes , Neoplasias da Mama/genética , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Inibição de Contato , Proteínas de Ligação a DNA/deficiência , Regulação para Baixo , Transporte de Elétrons/genética , Proteína Forkhead Box M1/metabolismo , Fase G2 , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Mitocondriais/deficiência , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA