Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Am J Physiol Renal Physiol ; 326(5): F780-F791, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482553

RESUMO

Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of chronic kidney disease before the age of 25 yr. Nephrin, encoded by NPHS1, localizes to the slit diaphragm of glomerular podocytes and is the predominant structural component of the glomerular filtration barrier. Biallelic variants in NPHS1 can cause congenital nephrotic syndrome of the Finnish type, for which, to date, no causative therapy is available. Recently, adeno-associated virus (AAV) vectors targeting the glomerular podocyte have been assessed as a means for gene replacement therapy. Here, we established quantitative and reproducible phenotyping of a published, conditional Nphs1 knockout mouse model (Nphs1tm1.1Pgarg/J and Nphs2-Cre+) in preparation for a gene replacement study using AAV vectors. Nphs1 knockout mice (Nphs1fl/fl Nphs2-Cre+) exhibited 1) a median survival rate of 18 days (range: from 9 to 43 days; males: 16.5 days and females: 20 days); 2) an average foot process (FP) density of 1.0 FP/µm compared with 2.0 FP/µm in controls and a mean filtration slit density of 2.64 µm/µm2 compared with 4.36 µm/µm2 in controls; 3) a high number of proximal tubular microcysts; 4) the development of proteinuria within the first week of life as evidenced by urine albumin-to-creatinine ratios; and 5) significantly reduced levels of serum albumin and elevated blood urea nitrogen and creatinine levels. For none of these phenotypes, significant differences between sexes in Nphs1 knockout mice were observed. We quantitatively characterized five different phenotypic features of congenital nephrotic syndrome in Nphs1fl/fl Nphs2-Cre+ mice. Our results will facilitate future gene replacement therapy projects by allowing for sensitive detection of even subtle molecular effects.NEW & NOTEWORTHY To evaluate potential, even subtle molecular, therapeutic effects of gene replacement therapy (GRT) in a mouse model, prior rigorous quantifiable and reproducible disease phenotyping is necessary. Here, we, therefore, describe such a phenotyping effort in nephrin (Nphs1) knockout mice to establish the basis for GRT for congenital nephrotic syndrome. We believe that our findings set an important basis for upcoming/ongoing gene therapy approaches in the field of nephrology, especially for monogenic nephrotic syndrome.


Assuntos
Proteínas de Membrana , Camundongos Knockout , Síndrome Nefrótica , Fenótipo , Podócitos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Feminino , Masculino , Síndrome Nefrótica/genética , Síndrome Nefrótica/terapia , Podócitos/metabolismo , Modelos Animais de Doenças , Terapia Genética/métodos , Camundongos , Vetores Genéticos
2.
Pediatr Nephrol ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930417

RESUMO

Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most frequent genetic causes for kidney failure (KF) in children and adolescents. Over 20 genes cause NPHP and over 90 genes contribute to renal ciliopathies often involving multiple organs. About 15-20% of NPHP patients have additional extrarenal symptoms affecting other organs than the kidneys. The involvement of additional organ systems in syndromic forms of NPHP is explained by shared expression of most NPHP gene products in centrosomes and primary cilia, a sensory organelle present in most mammalian cells. This finding resulted in the classification of NPHP as a ciliopathy. If extrarenal symptoms are present in addition to NPHP, these disorders are defined as NPHP-related ciliopathies (NPHP-RC) and can involve the retina (e.g., with Senior-Løken syndrome), CNS (central nervous system) (e.g., with Joubert syndrome), liver (e.g., Boichis and Arima syndromes), or bone (e.g., Mainzer-Saldino and Sensenbrenner syndromes). This review focuses on the pathological findings and the recent genetic advances in NPHP and NPHP-RC. Different mechanisms and signaling pathways are involved in NPHP ranging from planar cell polarity, sonic hedgehog signaling (Shh), DNA damage response pathway, Hippo, mTOR, and cAMP signaling. A number of therapeutic interventions appear to be promising, ranging from vasopressin receptor 2 antagonists such as tolvaptan, cyclin-dependent kinase inhibitors such as roscovitine, Hh agonists such as purmorphamine, and mTOR inhibitors such as rapamycin.

3.
Cell Commun Signal ; 21(1): 142, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328841

RESUMO

BACKGROUND: LRRC6 is an assembly factor for dynein arms in the cytoplasm of motile ciliated cells, and when mutated, dynein arm components remained in the cytoplasm. Here, we demonstrate the role of LRRC6 in the active nuclear translocation of FOXJ1, a master regulator for cilia-associated gene transcription. METHODS: We generated Lrrc6 knockout (KO) mice, and we investigated the role of LRRC6 on ciliopathy development by using proteomic, transcriptomic, and immunofluorescence analysis. Experiments on mouse basal cell organoids confirmed the biological relevance of our findings. RESULTS: The absence of LRRC6 in multi-ciliated cells hinders the assembly of ODA and IDA components of cilia; in this study, we showed that the overall expression of proteins related to cilia decreased as well. Expression of cilia-related transcripts, specifically ODA and IDA components, dynein axonemal assembly factors, radial spokes, and central apparatus was lower in Lrrc6 KO mice than in wild-type mice. We demonstrated that FOXJ1 was present in the cytoplasm and translocated into the nucleus when LRRC6 was expressed and that this process was blocked by INI-43, an importin α inhibitor. CONCLUSIONS: Taken together, these results hinted at the LRRC6 transcriptional regulation of cilia-related genes via the nuclear translocation of FOXJ1. Video Abstract.


Assuntos
Cílios , Dineínas , Fatores de Transcrição Forkhead , Animais , Camundongos , Cílios/metabolismo , Dineínas/genética , Dineínas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Camundongos Knockout , Proteínas/genética , Proteômica , Proteínas do Citoesqueleto/metabolismo
4.
Acta Paediatr ; 112(6): 1324-1332, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36847718

RESUMO

AIM: The earlier the onset of proteinuria, the higher the incidence of genetic forms. Therefore, we aimed to analyse the spectrum of monogenic proteinuria in Egyptian children presenting at age <2 years. METHODS: The results of 27-gene panel or whole-exome sequencing were correlated with phenotype and treatment outcomes in 54 patients from 45 families. RESULTS: Disease-causing variants were identified in 29/45 (64.4%) families. Mutations often occurred in three podocytopathy genes: NPHS1, NPHS2 and PLCE1 (19 families). Some showed extrarenal manifestations. Additionally, mutations were detected in 10 other genes, including novel variants of OSGEP, SGPL1 and SYNPO2. COL4A variants phenocopied isolated steroid-resistant nephrotic syndrome (2/29 families, 6.9%). NPHS2 M1L was the single most common genetic finding beyond the age of 3 months (4/18 families, 22.2%). Biopsy results did not correlate with genotypes (n = 30). On renin-angiotensin-aldosterone system antagonists alone, partial and complete remission occurred in 3/24 (12.5%) patients with monogenic proteinuria each, whereas 6.3% (1/16) achieved complete remission on immunosuppression. CONCLUSION: Genotyping is mandatory to avoid biopsies and immunosuppression when proteinuria presents at age <2 years. Even with such a presentation, COL4A genes should be included. NPHS2 M1L was prevalent in Egyptian children (4 months-2 years) with proteinuria, demonstrating precision diagnostic utility.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Síndrome Nefrótica , Humanos , Remissão Espontânea , Egito , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Síndrome Nefrótica/terapia , Proteinúria/genética , Mutação
5.
Am J Med Genet A ; 191(5): 1355-1359, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36694287

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of chronic kidney disease that manifests in children. To date ~23 different monogenic causes have been implicated in isolated forms of human CAKUT, but the vast majority remains elusive. In a previous study, we identified a homozygous missense variant in E26 transformation-specific (ETS) Variant Transcription Factor 4 (ETV4) causing CAKUT via dysregulation of the transcriptional function of ETV4, and a resulting abrogation of GDNF/RET/ETV4 signaling pathway. This CAKUT family remains the only family with an ETV4 variant reported so far. Here, we describe one additional CAKUT family with a homozygous truncating variant in ETV4 (p.(Lys6*)) that was identified by exome sequencing. The variant was found in an individual with isolated CAKUT displaying posterior urethral valves and renal dysplasia. The newly identified stop variant conceptually truncates the ETS_PEA3_N and ETS domains that regulate DNA-binding transcription factor activity. The variant has never been reported homozygously in the gnomAD database. To our knowledge, we here report the first CAKUT family with a truncating variant in ETV4, potentially causing the isolated CAKUT phenotype observed in the affected individual.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Criança , Humanos , Anormalidades Urogenitais/genética , Rim/anormalidades , Sistema Urinário/metabolismo , Refluxo Vesicoureteral/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo
6.
J Med Genet ; 60(6): 587-596, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36379543

RESUMO

BACKGROUND: SHROOM4 is thought to play an important role in cytoskeletal modification and development of the early nervous system. Previously, single-nucleotide variants (SNVs) or copy number variations (CNVs) in SHROOM4 have been associated with the neurodevelopmental disorder Stocco dos Santos syndrome, but not with congenital anomalies of the urinary tract and the visceral or the cardiovascular system. METHODS: Here, exome sequencing and CNV analyses besides expression studies in zebrafish and mouse and knockdown (KD) experiments using a splice blocking morpholino in zebrafish were performed to study the role of SHROOM4 during embryonic development. RESULTS: In this study, we identified putative disease-causing SNVs and CNVs in SHROOM4 in six individuals from four families with congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems (CNS). Embryonic mouse and zebrafish expression studies showed Shroom4 expression in the upper and lower urinary tract, the developing cloaca, the heart and the cerebral CNS. KD studies in zebrafish larvae revealed pronephric cysts, anomalies of the cloaca and the heart, decreased eye-to-head ratio and higher mortality compared with controls. These phenotypes could be rescued by co-injection of human wild-type SHROOM4 mRNA and morpholino. CONCLUSION: The identified SNVs and CNVs in affected individuals with congenital anomalies of the urinary tract, the anorectal, the cardiovascular and the central nervous systems, and subsequent embryonic mouse and zebrafish studies suggest SHROOM4 as a developmental gene for different organ systems.


Assuntos
Sistema Cardiovascular , Sistema Urinário , Gravidez , Feminino , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Variações do Número de Cópias de DNA , Morfolinos , Sistema Urinário/anormalidades , Sistema Nervoso Central
7.
J Am Soc Nephrol ; 33(11): 1989-2007, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36316095

RESUMO

BACKGROUND: Myo1e is a nonmuscle motor protein enriched in podocytes. Mutations in MYO1E are associated with steroid-resistant nephrotic syndrome (SRNS). Most of the MYO1E variants identified by genomic sequencing have not been functionally characterized. Here, we set out to analyze two mutations in the Myo1e motor domain, T119I and D388H, which were selected on the basis of protein sequence conservation. METHODS: EGFP-tagged human Myo1e constructs were delivered into the Myo1e-KO mouse podocyte-derived cells via adenoviral infection to analyze Myo1e protein stability, Myo1e localization, and clathrin-dependent endocytosis, which is known to involve Myo1e activity. Furthermore, truncated Myo1e constructs were expressed using the baculovirus expression system and used to measure Myo1e ATPase and motor activity in vitro. RESULTS: Both mutants were expressed as full-length proteins in the Myo1e-KO cells. However, unlike wild-type (WT) Myo1e, the T119I variant was not enriched at the cell junctions or clathrin-coated vesicles (CCVs). In contrast, D388H variant localization was similar to that of WT. The rate of dissociation of the D388H variant from cell-cell junctions and CCVs was decreased, suggesting this mutation affects Myo1e interactions with binding partners. ATPase activity and ability to translocate actin filaments were drastically reduced for the D388H mutant, supporting findings from cell-based experiments. CONCLUSIONS: T119I and D388H mutations are deleterious to Myo1e functions. The experimental approaches used in this study can be applied to future characterization of novel MYO1E variants associated with SRNS.


Assuntos
Miosina Tipo I , Síndrome Nefrótica , Animais , Humanos , Camundongos , Mutação , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Síndrome Nefrótica/genética , Esteroides
8.
Cell Rep ; 40(6): 111166, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947947

RESUMO

The corneal epithelium is renowned for high regenerative potential, which is dependent on the coordinated function of its diverse progenitor subpopulations. However, the molecular pathways governing corneal epithelial progenitor differentiation are incompletely understood. Here, we identify a highly proliferative limbal epithelial progenitor subpopulation characterized by expression of basal cell adhesion molecule (BCAM) that is capable of holocone formation and corneal epithelial sheet generation. BCAM-positive cells can be found among ABCB5-positive limbal stem cells (LSCs) as well as among ABCB5-negative limbal epithelial cell populations. Mechanistically, we show that BCAM is functionally required for cellular migration and differentiation and that its expression is regulated by the transcription factor p63. In aggregate, our study identifies limbal BCAM expression as a marker of highly proliferative corneal epithelial progenitor cells and defines the role of BCAM as a critical molecular mediator of corneal epithelial differentiation.


Assuntos
Epitélio Corneano , Limbo da Córnea , Diferenciação Celular , Células Cultivadas , Córnea , Células Epiteliais/metabolismo , Limbo da Córnea/metabolismo , Células-Tronco/metabolismo
9.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163670

RESUMO

Primary ciliary dyskinesia (PCD) is a rare lung disease caused by mutations that impair the function of motile cilia, resulting in chronic upper and lower respiratory disease, reduced fertility, and a high prevalence of situs abnormalities. The disease is genetically and phenotypically heterogeneous, with causative mutations in > 50 genes identified, and clinical phenotypes ranging from mild to severe. Absence of ODAD1 (CCDC114), a component of the outer dynein arm docking complex, results in a failure to assemble outer dynein arms (ODAs), mostly immotile cilia, and a typical PCD phenotype. We identified a female (now 34 years old) with an unusually mild clinical phenotype who has a homozygous non-canonical splice mutation (c.1502+5G>A) in ODAD1. To investigate the mechanism for the unusual phenotype, we performed molecular and functional studies of cultured nasal epithelial cells. We demonstrate that this splice mutation results in the expression of a truncated protein that is attached to the axoneme, indicating that the mutant protein retains partial function. This allows for the assembly of some ODAs and a significant level of ciliary activity that may result in the atypically mild clinical phenotype. The results also suggest that partial restoration of ciliary function by therapeutic agents could lead to significant improvement of disease symptoms.


Assuntos
Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mutantes/metabolismo , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Cílios/metabolismo , Cílios/ultraestrutura , Dineínas/metabolismo , Feminino , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Mutação/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
J Nephrol ; 35(6): 1655-1665, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099770

RESUMO

BACKGROUND AND AIMS: Genetic testing presents a unique opportunity for diagnosis and management of genetic kidney diseases (GKD). Here, we describe the clinical utility and valuable impact of a specialized GKD clinic, which uses a variety of genomic sequencing strategies. METHODS: In this prospective cohort study, we undertook genetic testing in adults with suspected GKD according to prespecified criteria. Over 7 years, patients were referred from tertiary centres across Ireland to an academic medical centre as part of the Irish Kidney Gene Project. RESULTS: Among 677 patients, the mean age was of 37.2 ± 13 years, and 73.9% of the patients had family history of chronic kidney disease (CKD). We achieved a molecular diagnostic rate of 50.9%. Four genes accounted for more than 70% of identified pathogenic variants: PKD1 and PKD2 (n = 186, 53.4%), MUC1 (8.9%), and COL4A5 (8.3%). In 162 patients with a genetic diagnosis, excluding PKD1/PKD2, the a priori diagnosis was confirmed in 58% and in 13% the diagnosis was reclassified. A genetic diagnosis was established in 22 (29.7%) patients with CKD of uncertain aetiology. Based on genetic testing, a diagnostic kidney biopsy was unnecessary in 13 (8%) patients. Presence of family history of CKD and the underlying a priori diagnosis were independent predictors (P < 0.001) of a positive genetic diagnosis. CONCLUSIONS: A dedicated GKD clinic is a valuable resource, and its implementation of various genomic strategies has resulted in a direct, demonstrable clinical and therapeutic benefits to affected patients.


Assuntos
Rim Policístico Autossômico Dominante , Insuficiência Renal Crônica , Adulto , Testes Genéticos/métodos , Humanos , Rim , Pessoa de Meia-Idade , Mutação , Rim Policístico Autossômico Dominante/diagnóstico , Estudos Prospectivos , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Canais de Cátion TRPP/genética , Adulto Jovem
11.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739029

RESUMO

Genome editing simplifies the generation of new animal models for congenital disorders. However, the detailed and unbiased phenotypic assessment of altered embryonic development remains a challenge. Here, we explore how deep learning (U-Net) can automate segmentation tasks in various imaging modalities, and we quantify phenotypes of altered renal, neural and craniofacial development in Xenopus embryos in comparison with normal variability. We demonstrate the utility of this approach in embryos with polycystic kidneys (pkd1 and pkd2) and craniofacial dysmorphia (six1). We highlight how in toto light-sheet microscopy facilitates accurate reconstruction of brain and craniofacial structures within X. tropicalis embryos upon dyrk1a and six1 loss of function or treatment with retinoic acid inhibitors. These tools increase the sensitivity and throughput of evaluating developmental malformations caused by chemical or genetic disruption. Furthermore, we provide a library of pre-trained networks and detailed instructions for applying deep learning to the reader's own datasets. We demonstrate the versatility, precision and scalability of deep neural network phenotyping on embryonic disease models. By combining light-sheet microscopy and deep learning, we provide a framework for higher-throughput characterization of embryonic model organisms. This article has an associated 'The people behind the papers' interview.


Assuntos
Aprendizado Profundo , Desenvolvimento Embrionário/genética , Fenótipo , Animais , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia , Mutação , Redes Neurais de Computação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Doenças Renais Policísticas/embriologia , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Proteínas de Xenopus/genética , Xenopus laevis
12.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548398

RESUMO

Skeletal ciliopathies (e.g., Jeune syndrome, short rib polydactyly syndrome, and Sensenbrenner syndrome) are frequently associated with nephronophthisis-like cystic kidney disease and other organ manifestations. Despite recent progress in genetic mapping of causative loci, a common molecular mechanism of cartilage defects and cystic kidneys has remained elusive. Targeting two ciliary chondrodysplasia loci (ift80 and ift172) by CRISPR/Cas9 mutagenesis, we established models for skeletal ciliopathies in Xenopus tropicalis Froglets exhibited severe limb deformities, polydactyly, and cystic kidneys, closely matching the phenotype of affected patients. A data mining-based in silico screen found ttc30a to be related to known skeletal ciliopathy genes. CRISPR/Cas9 targeting replicated limb malformations and renal cysts identical to the models of established disease genes. Loss of Ttc30a impaired embryonic renal excretion and ciliogenesis because of altered posttranslational tubulin acetylation, glycylation, and defective axoneme compartmentalization. Ttc30a/b transcripts are enriched in chondrocytes and osteocytes of single-cell RNA-sequenced embryonic mouse limbs. We identify TTC30A/B as an essential node in the network of ciliary chondrodysplasia and nephronophthisis-like disease proteins and suggest that tubulin modifications and cilia segmentation contribute to skeletal and renal ciliopathy manifestations of ciliopathies in a cell type-specific manner. These findings have implications for potential therapeutic strategies.


Assuntos
Osso e Ossos/anormalidades , Ciliopatias/patologia , Craniossinostoses/patologia , Proteínas do Citoesqueleto/metabolismo , Displasia Ectodérmica/patologia , Embrião não Mamífero/patologia , Anormalidades Musculoesqueléticas/patologia , Doenças Renais Policísticas/patologia , Tubulina (Proteína)/química , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Ciliopatias/genética , Ciliopatias/metabolismo , Craniossinostoses/genética , Craniossinostoses/metabolismo , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Embrião não Mamífero/metabolismo , Anormalidades Musculoesqueléticas/genética , Anormalidades Musculoesqueléticas/metabolismo , Fenótipo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Tubulina (Proteína)/metabolismo , Xenopus laevis
13.
Sci Rep ; 11(1): 18274, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521872

RESUMO

Mutation of the Cys1 gene underlies the renal cystic disease in the Cys1cpk/cpk (cpk) mouse that phenocopies human autosomal recessive polycystic kidney disease (ARPKD). Cystin, the protein product of Cys1, is expressed in the primary apical cilia of renal ductal epithelial cells. In previous studies, we showed that cystin regulates Myc expression via interaction with the tumor suppressor, necdin. Here, we demonstrate rescue of the cpk renal phenotype by kidney-specific expression of a cystin-GFP fusion protein encoded by a transgene integrated into the Rosa26 locus. In addition, we show that expression of the cystin-GFP fusion protein in collecting duct cells down-regulates expression of Myc in cpk kidneys. Finally, we report the first human patient with an ARPKD phenotype due to homozygosity for a deleterious splicing variant in CYS1. These findings suggest that mutations in Cys1/CYS1 cause an ARPKD phenotype in mouse and human, respectively, and that the renal cystic phenotype in the mouse is driven by overexpression of the Myc proto-oncogene.


Assuntos
Proteínas de Membrana/genética , Rim Policístico Autossômico Recessivo/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Pré-Escolar , Regulação para Baixo , Predisposição Genética para Doença/genética , Variação Genética/genética , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Transgênicos , Rim Policístico Autossômico Recessivo/patologia
14.
Am J Med Genet A ; 185(10): 3005-3011, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34145744

RESUMO

WNT9B plays a key role in the development of the mammalian urogenital system. It is essential for the induction of mesonephric and metanephric tubules, the regulation of renal tubule morphogenesis, and the regulation of renal progenitor cell expansion and differentiation. To our knowledge, WNT9B has not been associated with renal defects in humans; however, WNT9B-/- mice have renal agenesis/hypoplasia and reproductive tract abnormalities. We report four individuals from two unrelated consanguineous families with bilateral renal agenesis/hypoplasia/dysplasia and homozygous variants in WNT9B. The proband from Family 1 has bilateral renal cystic dysplasia and chronic kidney disease. He has two deceased siblings who presented with bilateral renal hypoplasia/agenesis. The three affected family members were homozygous for a missense variant in WNT9B (NM_003396.2: c.949G>A/p.(Gly317Arg)). The proband from Family 2 has renal hypoplasia/dysplasia, chronic kidney disease, and is homozygous for a nonsense variant in WNT9B (NM_003396.2: c.11dupC/p.(Pro5Alafs*52)). Two of her siblings died in the neonatal period, one confirmed to be in the context of oligohydramnios. The proband's unaffected brother is also homozygous for the nonsense variant in WNT9B, suggesting nonpenetrance. We propose a novel association of WNT9B and renal anomalies in humans. Further study is needed to delineate the contribution of WNT9B to genitourinary anomalies in humans.


Assuntos
Anormalidades Congênitas/genética , Nefropatias/congênito , Rim/anormalidades , Anormalidades Urogenitais/genética , Proteínas Wnt/genética , Animais , Criança , Anormalidades Congênitas/patologia , Feminino , Homozigoto , Humanos , Lactente , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Túbulos Renais/crescimento & desenvolvimento , Túbulos Renais/patologia , Masculino , Camundongos , Gravidez , Sistema Urinário/crescimento & desenvolvimento , Sistema Urinário/metabolismo , Sistema Urinário/patologia , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/patologia
15.
J Allergy Clin Immunol ; 148(2): 381-393, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33872655

RESUMO

BACKGROUND: Recognition of viral nucleic acids is one of the primary triggers for a type I interferon-mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections as a result of dysbalanced interferon production. NFX1-type zinc finger-containing 1 (ZNFX1) is an interferon-stimulated double-stranded RNA sensor that restricts the replication of RNA viruses in mice. The role of ZNFX1 in the human immune response is not known. OBJECTIVE: We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic lymphohistiocytosis-like disease, early-onset seizures, and renal and lung disease. METHODS: Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, posttranscriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids. RESULTS: Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of the mRNA of ISGs and also associated with poorer clearance of viral infections by monocytes. CONCLUSION: ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease.


Assuntos
Antígenos de Neoplasias/genética , Sequenciamento do Exoma , Predisposição Genética para Doença , Doenças da Imunodeficiência Primária/imunologia , Viroses/genética , Antígenos de Neoplasias/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Inflamação/diagnóstico por imagem , Inflamação/genética , Inflamação/imunologia , Masculino , Doenças da Imunodeficiência Primária/diagnóstico por imagem , Doenças da Imunodeficiência Primária/genética , Viroses/diagnóstico por imagem , Viroses/imunologia
16.
Kidney Int Rep ; 6(2): 460-471, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615071

RESUMO

INTRODUCTION: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of chronic kidney disease during childhood. Identification of 63 monogenic human genes has delineated 12 distinct pathogenic pathways. METHODS: Here, we generated 2 independent sets of nephrotic syndrome (NS) candidate genes to augment the discovery of additional monogenic causes based on whole-exome sequencing (WES) data from 1382 families with NS. RESULTS: We first identified 63 known monogenic causes of NS in mice from public databases and scientific publications, and 12 of these genes overlapped with the 63 known human monogenic SRNS genes. Second, we used a set of 64 genes that are regulated by the transcription factor Wilms tumor 1 (WT1), which causes SRNS if mutated. Thirteen of these WT1-regulated genes overlapped with human or murine NS genes. Finally, we overlapped these lists of murine and WT1 candidate genes with our list of 120 candidate genes generated from WES in 1382 NS families, to identify novel candidate genes for monogenic human SRNS. Using this approach, we identified 7 overlapping genes, of which 3 genes were shared by all datasets, including SYNPO. We show that loss-of-function of SYNPO leads to decreased CDC42 activity and reduced podocyte migration rate, both of which are rescued by overexpression of wild-type complementary DNA (cDNA), but not by cDNA representing the patient mutation. CONCLUSION: Thus, we identified 3 novel candidate genes for human SRNS using 3 independent, nonoverlapping hypotheses, and generated functional evidence for SYNPO as a novel potential monogenic cause of NS.

17.
J Med Genet ; 58(7): 453-464, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32631816

RESUMO

BACKGROUND: Cilia are dynamic cellular extensions that generate and sense signals to orchestrate proper development and tissue homeostasis. They rely on the underlying polarisation of cells to participate in signalling. Cilia dysfunction is a well-known cause of several diseases that affect multiple organ systems including the kidneys, brain, heart, respiratory tract, skeleton and retina. METHODS: Among individuals from four unrelated families, we identified variants in discs large 5 (DLG5) that manifested in a variety of pathologies. In our proband, we also examined patient tissues. We depleted dlg5 in Xenopus tropicalis frog embryos to generate a loss-of-function model. Finally, we tested the pathogenicity of DLG5 patient variants through rescue experiments in the frog model. RESULTS: Patients with variants of DLG5 were found to have a variety of phenotypes including cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations. We also observed a loss of cilia in cystic kidney tissue of our proband. Knockdown of dlg5 in Xenopus embryos recapitulated many of these phenotypes and resulted in a loss of cilia in multiple tissues. Unlike introduction of wildtype DLG5 in frog embryos depleted of dlg5, introduction of DLG5 patient variants was largely ineffective in restoring proper ciliation and tissue morphology in the kidney and brain suggesting that the variants were indeed detrimental to function. CONCLUSION: These findings in both patient tissues and Xenopus shed light on how mutations in DLG5 may lead to tissue-specific manifestations of disease. DLG5 is essential for cilia and many of the patient phenotypes are in the ciliopathy spectrum.


Assuntos
Ciliopatias/genética , Anormalidades Congênitas/genética , Proteínas de Membrana/genética , Mutação , Proteínas Supressoras de Tumor/genética , Animais , Encéfalo/patologia , Criança , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Feto/anormalidades , Técnicas de Silenciamento de Genes , Proteínas Hedgehog/metabolismo , Humanos , Rim/patologia , Masculino , Linhagem , Transdução de Sinais , Sequenciamento do Exoma , Xenopus
18.
Am J Physiol Renal Physiol ; 319(6): F988-F999, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103447

RESUMO

Pathogenic variants in the LRP2 gene, encoding the multiligand receptor megalin, cause a rare autosomal recessive syndrome: Donnai-Barrow/Facio-Oculo-Acoustico-Renal (DB/FOAR) syndrome. Because of the rarity of the syndrome, the long-term consequences of the tubulopathy on human renal health have been difficult to ascertain, and the human clinical condition has hitherto been characterized as a benign tubular condition with asymptomatic low-molecular-weight proteinuria. We investigated renal function and morphology in a murine model of DB/FOAR syndrome and in patients with DB/FOAR. We analyzed glomerular filtration rate in mice by FITC-inulin clearance and clinically characterized six families, including nine patients with DB/FOAR and nine family members. Urine samples from patients were analyzed by Western blot analysis and biopsy materials were analyzed by histology. In the mouse model, we used histological methods to assess nephrogenesis and postnatal renal structure and contrast-enhanced magnetic resonance imaging to assess glomerular number. In megalin-deficient mice, we found a lower glomerular filtration rate and an increase in the abundance of injury markers, such as kidney injury molecule-1 and N-acetyl-ß-d-glucosaminidase. Renal injury was validated in patients, who presented with increased urinary kidney injury molecule-1, classical markers of chronic kidney disease, and glomerular proteinuria early in life. Megalin-deficient mice had normal nephrogenesis, but they had 19% fewer nephrons in early adulthood and an increased fraction of nephrons with disconnected glomerulotubular junction. In conclusion, megalin dysfunction, as present in DB/FOAR syndrome, confers an increased risk of progression into chronic kidney disease.


Assuntos
Predisposição Genética para Doença , Variação Genética , Glomérulos Renais/patologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Insuficiência Renal Crônica/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Humanos , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Insuficiência Renal Crônica/patologia , Adulto Jovem
19.
Hum Mol Genet ; 29(18): 3064-3080, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32886109

RESUMO

ANKS6 is a ciliary protein that localizes to the proximal compartment of the primary cilium, where it regulates signaling. Mutations in the ANKS6 gene cause multiorgan ciliopathies in humans, which include laterality defects of the visceral organs, renal cysts as part of nephronophthisis and congenital hepatic fibrosis (CHF) in the liver. Although CHF together with liver ductal plate malformations are common features of several human ciliopathy syndromes, including nephronophthisis-related ciliopathies, the mechanism by which mutations in ciliary genes lead to bile duct developmental abnormalities is not understood. Here, we generated a knockout mouse model of Anks6 and show that ANKS6 function is required for bile duct morphogenesis and cholangiocyte differentiation. The loss of Anks6 causes ciliary abnormalities, ductal plate remodeling defects and periportal fibrosis in the liver. Our expression studies and biochemical analyses show that biliary abnormalities in Anks6-deficient livers result from the dysregulation of YAP transcriptional activity in the bile duct-lining epithelial cells. Mechanistically, our studies suggest, that ANKS6 antagonizes Hippo signaling in the liver during bile duct development by binding to Hippo pathway effector proteins YAP1, TAZ and TEAD4 and promoting their transcriptional activity. Together, this study reveals a novel function for ANKS6 in regulating Hippo signaling during organogenesis and provides mechanistic insights into the regulatory network controlling bile duct differentiation and morphogenesis during liver development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Fígado/crescimento & desenvolvimento , Proteínas Musculares/genética , Fatores de Transcrição/genética , Animais , Ductos Biliares/crescimento & desenvolvimento , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Diferenciação Celular/genética , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Humanos , Fígado/anormalidades , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Morfogênese/genética , Transdução de Sinais/genética , Fatores de Transcrição de Domínio TEA , Proteínas de Sinalização YAP
20.
Nat Rev Dis Primers ; 6(1): 68, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792490

RESUMO

Podocytopathies are kidney diseases in which direct or indirect podocyte injury drives proteinuria or nephrotic syndrome. In children and young adults, genetic variants in >50 podocyte-expressed genes, syndromal non-podocyte-specific genes and phenocopies with other underlying genetic abnormalities cause podocytopathies associated with steroid-resistant nephrotic syndrome or severe proteinuria. A variety of genetic variants likely contribute to disease development. Among genes with non-Mendelian inheritance, variants in APOL1 have the largest effect size. In addition to genetic variants, environmental triggers such as immune-related, infection-related, toxic and haemodynamic factors and obesity are also important causes of podocyte injury and frequently combine to cause various degrees of proteinuria in children and adults. Typical manifestations on kidney biopsy are minimal change lesions and focal segmental glomerulosclerosis lesions. Standard treatment for primary podocytopathies manifesting with focal segmental glomerulosclerosis lesions includes glucocorticoids and other immunosuppressive drugs; individuals not responding with a resolution of proteinuria have a poor renal prognosis. Renin-angiotensin system antagonists help to control proteinuria and slow the progression of fibrosis. Symptomatic management may include the use of diuretics, statins, infection prophylaxis and anticoagulation. This Primer discusses a shift in paradigm from patient stratification based on kidney biopsy findings towards personalized management based on clinical, morphological and genetic data as well as pathophysiological understanding.


Assuntos
Rim/lesões , Rim/fisiopatologia , Podócitos/fisiologia , Humanos , Rim/patologia , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/fisiopatologia , Podócitos/imunologia , Prevalência , Proteinúria/etiologia , Proteinúria/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA