Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1739: 409-438, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29546724

RESUMO

Adult Schwann cells (SCs) can provide both a permissive substrate for axonal growth and a source of cells to ensheath and myelinate axons when transplanted into the injured spinal cord. Multiple studies have demonstrated that SC transplants can be used as part of a combinatorial approach to repairing the injured spinal cord. Here, we describe the protocols for collection and transplantation of adult rat primary SCs into the injured spinal cord. Protocols are included for the tissue culture procedures necessary for collection, quantification, and suspension of the cells for transplantation and for the surgical procedures for spinal cord injury at thoracic level nine (T9), reexposure of the injury site for delayed transplantation, and injection of the cells into the spinal cord.


Assuntos
Células de Schwann/citologia , Traumatismos da Medula Espinal/terapia , Animais , Células Cultivadas , Regeneração Nervosa/fisiologia , Ratos , Recuperação de Função Fisiológica , Células de Schwann/transplante
2.
J Neurosci ; 36(15): 4259-75, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076424

RESUMO

Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals. Although CD2AP polymorphisms are associated with increased risk of late-onset Alzheimer's disease, its role in axon growth is unknown. Assessments of neurite arbor structure in vitro revealed CD2AP overexpression, and siRNA-mediated knockdown, modulated (1) neurite length, (2) neurite complexity, and (3) growth cone filopodia number, in accordance with CD2AP expression levels. We show, for the first time, that CD2AP forms a novel multiprotein complex with the NGF receptor TrkA and the PI3K regulatory subunit p85, with the degree of TrkA:p85 association positively regulated by CD2AP levels. CD2AP also regulates NGF signaling through AKT, but not ERK, and regulates long-range signaling though TrkA(+)/RAB5(+) signaling endosomes. CD2AP mRNA and protein levels were increased in neurons during collateral sprouting but decreased following injury, suggesting that, although typically considered together, these two adult axonal growth processes are fundamentally different. These data position CD2AP as a major intracellular signaling molecule coordinating NGF signaling to regulate collateral sprouting and structural plasticity of intact adult axons. SIGNIFICANCE STATEMENT: Growth of noninjured axons in the adult nervous system contributes to adaptive and maladaptive plasticity, and dysfunction of this process may contribute to neurologic pathologies. Functional screening of genes regulated during growth of noninjured axons revealed CD2AP as a positive regulator of axon outgrowth. A novel association of CD2AP with TrkA and p85 suggests a distinct intracellular signaling pathway regulating growth of noninjured axons. This may also represent a novel mechanism of generating specificity in multifunctional NGF signaling. Divergent regulation of CD2AP in different axon growth conditions suggests that separate mechanisms exist for different modes of axon growth. CD2AP is the first signaling molecule associated with adult sensory axonal collateral sprouting, and this association may offer new insights for NGF/TrkA-related Alzheimer's disease mechanisms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Axônios/fisiologia , Proteínas do Citoesqueleto/fisiologia , Fatores de Crescimento Neural/fisiologia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular/genética , Classe Ia de Fosfatidilinositol 3-Quinase/fisiologia , Proteínas do Citoesqueleto/genética , Endossomos/metabolismo , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/genética , Pseudópodes/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Receptor trkA/fisiologia , Transdução de Sinais/genética
3.
Exp Neurol ; 248: 30-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23727091

RESUMO

Cellular therapies represent a novel treatment approach for spinal cord injury (SCI), with many different cellular substrates showing promise in preclinical animal models of SCI. Considerable interest therefore exists to translate such cellular interventions into human clinical trials. Balanced against the urgency for clinical translation is the desire to establish the robustness of a cellular therapy's efficacy in preclinical studies, thereby optimizing its chances of succeeding in human trials. Uncertainty exists, however, on the extent to which a therapy needs to demonstrate efficacy in the preclinical setting in order to justify the initiation of a lengthy, expensive, and potentially risky clinical trial. The purpose of this initiative was to seek perspectives on the level of evidence required in experimental studies of cellular therapies before proceeding with clinical trials of SCI. We conducted a survey of 27 SCI researchers actively involved in either preclinical and/or clinical research of cellular interventions for SCI, and then held a focus group meeting to facilitate more in-depth discussion around a number of translational issues. These included: the use of animal models, the use of injury models and mechanisms, the window for demonstrating efficacy, independent replication, defining "relevant, meaningful efficacy" in preclinical studies, and the expectation of therapeutic benefits for cellular interventions. Here we present the key findings from both the survey and focus group meeting in order to summarize and underscore the areas of consensus and disagreement amongst the sampled researchers. It is anticipated that the knowledge generated from this initiative will help to incite future scientific discussions and expert guidelines towards translation of a cell therapy for persons with SCI.


Assuntos
Transplante de Células/métodos , Modelos Animais de Doenças , Traumatismos da Medula Espinal/terapia , Animais , Grupos Focais , Pesquisa Translacional Biomédica , Resultado do Tratamento
4.
J Neurotrauma ; 28(8): 1611-82, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20146557

RESUMO

Cell transplantation therapies have become a major focus in pre-clinical research as a promising strategy for the treatment of spinal cord injury (SCI). In this article, we systematically review the available pre-clinical literature on the most commonly used cell types in order to assess the body of evidence that may support their translation to human SCI patients. These cell types include Schwann cells, olfactory ensheathing glial cells, embryonic and adult neural stem/progenitor cells, fate-restricted neural/glial precursor cells, and bone-marrow stromal cells. Studies were included for review only if they described the transplantation of the cell substrate into an in-vivo model of traumatic SCI, induced either bluntly or sharply. Using these inclusion criteria, 162 studies were identified and reviewed in detail, emphasizing their behavioral effects (although not limiting the scope of the discussion to behavioral effects alone). Significant differences between cells of the same "type" exist based on the species and age of donor, as well as culture conditions and mode of delivery. Many of these studies used cell transplantations in combination with other strategies. The systematic review makes it very apparent that cells derived from rodent sources have been the most extensively studied, while only 19 studies reported the transplantation of human cells, nine of which utilized bone-marrow stromal cells. Similarly, the vast majority of studies have been conducted in rodent models of injury, and few studies have investigated cell transplantation in larger mammals or primates. With respect to the timing of intervention, nearly all of the studies reviewed were conducted with transplantations occurring subacutely and acutely, while chronic treatments were rare and often failed to yield functional benefits.


Assuntos
Transplante de Medula Óssea/métodos , Neuroglia/transplante , Neurônios/transplante , Traumatismos da Medula Espinal/cirurgia , Transplante de Células-Tronco/métodos , Animais , Modelos Animais de Doenças , Humanos , Neuroglia/citologia , Neurônios/citologia
5.
J Pain ; 11(11): 1066-73, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20627820

RESUMO

UNLABELLED: Skin incision and nerve injury both induce painful conditions. Incisional and postsurgical pain is believed to arise primarily from inflammation of tissue and the subsequent sensitization of peripheral and central neurons. The role of axonal regeneration-related processes in development of pain has only been considered when there has been injury to the peripheral nerve itself, even though tissue damage likely induces injury of resident axons. We sought to determine if skin incision would affect expression of regeneration-related genes such as activating transcription factor 3 (ATF3) in dorsal root ganglion (DRG) neurons. ATF3 is absent from DRG neurons of the normal adult rodent, but is induced by injury of peripheral nerves and modulates the regenerative capacity of axons. Image analysis of immunolabeled DRG sections revealed that skin incision led to an increase in the number of DRG neurons expressing ATF3. RT-PCR indicated that other regeneration-associated genes (galanin, GAP-43, Gadd45a) were also increased, further suggesting an injury-like response in DRG neurons. Our finding that injury of skin can induce expression of neuronal injury/regeneration-associated genes may impact how clinical postsurgical pain is investigated and treated. PERSPECTIVE: Tissue injury, even without direct nerve injury, may induce a state of enhanced growth capacity in sensory neurons. Axonal regeneration-associated processes should be considered alongside nerve signal conduction and inflammatory/sensitization processes as possible mechanisms contributing to pain, particularly the transition from acute to chronic pain.


Assuntos
Axônios/metabolismo , Axônios/patologia , Regulação da Expressão Gênica , Regeneração Nervosa/genética , Células Receptoras Sensoriais/metabolismo , Pele/lesões , Medula Espinal/cirurgia , Animais , Procedimentos Cirúrgicos Dermatológicos , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Transcrição Gênica
6.
Exp Neurol ; 190(2): 289-310, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15530870

RESUMO

Transplantation of stem cells and immature cells has been reported to ameliorate tissue damage, induce axonal regeneration, and improve locomotion following spinal cord injury. However, unless these cells are pushed down a neuronal lineage, the majority of cells become glia, suggesting that the alterations observed may be potentially glially mediated. Transplantation of glial-restricted precursor (GRP) cells--a precursor cell population restricted to oligodendrocyte and astrocyte lineages--offers a novel way to examine the effects of glial cells on injury processes and repair. This study examines the survival and differentiation of GRP cells, and their ability to modulate the development of the lesion when transplanted immediately after a moderate contusion injury of the rat spinal cord. GRP cells isolated from a transgenic rat that ubiquitously expresses heat-stable human placental alkaline phosphatase (PLAP) were used to unambiguously detect transplanted GRP cells. Following transplantation, some GRP cells differentiated into oligodendrocytes and astrocytes, retaining their differentiation potential after injury. Transplanted GRP cells altered the lesion environment, reducing astrocytic scarring and the expression of inhibitory proteoglycans. Transplanted GRP cells did not induce long-distance regeneration from corticospinal tract (CST) and raphe-spinal axons when compared to control animals. However, GRP cell transplants did alter the morphology of CST axons toward that of growth cones, and CST fibers were found within GRP cell transplants, suggesting that GRP cells may be able to support axonal growth in vivo after injury.


Assuntos
Regeneração Nervosa/fisiologia , Neuroglia/citologia , Traumatismos da Medula Espinal/cirurgia , Transplante de Células-Tronco , Fosfatase Alcalina , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Feminino , Proteínas Ligadas por GPI , Sobrevivência de Enxerto/fisiologia , Humanos , Imuno-Histoquímica , Isoenzimas/genética , Isoenzimas/metabolismo , Ratos , Ratos Long-Evans , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA