Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902352

RESUMO

Radiotherapy (ionising radiation; IR) is utilised in the treatment of ~50% of all human cancers, and where the therapeutic effect is largely achieved through DNA damage induction. In particular, complex DNA damage (CDD) containing two or more lesions within one to two helical turns of the DNA is a signature of IR and contributes significantly to the cell killing effects due to the difficult nature of its repair by the cellular DNA repair machinery. The levels and complexity of CDD increase with increasing ionisation density (linear energy transfer, LET) of the IR, such that photon (X-ray) radiotherapy is deemed low-LET whereas some particle ions (such as carbon ions) are high-LET radiotherapy. Despite this knowledge, there are challenges in the detection and quantitative measurement of IR-induced CDD in cells and tissues. Furthermore, there are biological uncertainties with the specific DNA repair proteins and pathways, including components of DNA single and double strand break mechanisms, that are engaged in CDD repair, which very much depends on the radiation type and associated LET. However, there are promising signs that advancements are being made in these areas and which will enhance our understanding of the cellular response to CDD induced by IR. There is also evidence that targeting CDD repair, particularly through inhibitors against selected DNA repair enzymes, can exacerbate the impact of higher LET, which could be explored further in a translational context.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Radiação Ionizante , Enzimas Reparadoras do DNA/genética , DNA
2.
World Neurosurg ; 172: e130-e143, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36587897

RESUMO

OBJECTIVE: To recalculate biological effective dose values (BED) for radio-surgical treatments of acoustic neuroma from a previous study. BEDs values were previously overestimated by only using beam-on times in calculations, so excluding the important beam-off-times (when deoxyribonucleic acid repair continues) which contribute to the overall treatment time. Simple BED estimations using a mono-exponential approximation may not always be appropriate but if used should include overall treatment time. METHODS: Time intervals between isocenters were estimated. These were especially important for the Gamma Knife Model 4C cases since manual changes significantly increase overall treatment times. Individual treatment parameters, such as iso-center number, beam-on-time, and beam-off-time, were then used to calculate BED values using a more appropriate bi-exponential model that includes fast and slow components of DNA damage repair over a wider time range. RESULTS: The revised BED estimates differed significantly from previously published values. The overestimates of BED, obtained using beam-on-time only, varied from 0%-40.3%. BED subclasses, each with a BED range of 5 Gy2.47, indicated that revised values were consistently reduced when compared with originally quoted values, especially for 4C compared with Perfexion cases. Furthermore, subdivision of 4C cases by collimator number further emphasized the impact of scheduled gap times on BED. Further analysis demonstrated important limitations of the mono-exponential model. Target volume was a major confounding factor in the interpretation of the results of this study. CONCLUSIONS: BED values should be estimated by including beam-on and beam-off times. Suggestions are provided for more accurate BED estimations in future studies.


Assuntos
Neuroma Acústico , Radiocirurgia , Humanos , Radiocirurgia/métodos , Neuroma Acústico/radioterapia , Neuroma Acústico/cirurgia , Dosagem Radioterapêutica
3.
Phys Med Biol ; 68(6)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36584393

RESUMO

This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed.


Assuntos
Radiometria , Animais , Raios X , Radiometria/métodos , Radiografia , Modelos Animais , Imagens de Fantasmas
4.
EMBO Rep ; 23(9): e53221, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35848459

RESUMO

The effect of radiation therapy on tumor vasculature has long been a subject of debate. Increased oxygenation and perfusion have been documented during radiation therapy. Conversely, apoptosis of endothelial cells in irradiated tumors has been proposed as a major contributor to tumor control. To examine these contradictions, we use multiphoton microscopy in two murine tumor models: MC38, a highly vascularized, and B16F10, a moderately vascularized model, grown in transgenic mice with tdTomato-labeled endothelium before and after a single (15 Gy) or fractionated (5 × 3 Gy) dose of radiation. Unexpectedly, even these high doses lead to little structural change of the perfused vasculature. Conversely, non-perfused vessels and blind ends are substantially impaired after radiation accompanied by apoptosis and reduced proliferation of their endothelium. RNAseq analysis of tumor endothelial cells confirms the modification of gene expression in apoptotic and cell cycle regulation pathways after irradiation. Therefore, we conclude that apoptosis of tumor endothelial cells after radiation does not impair vascular structure.


Assuntos
Células Endoteliais , Neoplasias , Animais , Apoptose , Células Endoteliais/metabolismo , Endotélio/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/radioterapia , Radiação Ionizante
5.
Sci Rep ; 12(1): 7150, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505194

RESUMO

Intercellular induction of apoptosis (IIA) represents a well-defined signaling model by which precancerous cells are selectively eradicated through reactive oxygen/nitrogen species and cytokine signaling from neighbour normal cells. Previously, we demonstrated that the IIA process could be enhanced by exposure of normal cells to very low doses of ionizing radiation as a result of perturbing the intercellular signaling. In this study, we investigate the kinetic behaviour of both autocrine destruction (AD) and IIA as a function of cell density of both precancerous and normal cells using an insert co-culture system and how exposure of normal cells to ionizing radiation influence the kinetics of apoptosis induction in precancerous cells. Increasing the seeding density of transformed cells shifts the kinetics of AD towards earlier times with the response plateauing only at high seeding densities. Likewise, when co-culturing precancerous cells with normal cells, increasing the seeding density of either normal or precancerous cells also shifts the kinetics of IIA response towards earlier times and plateau only at higher seeding densities. Irradiation of normal cells prior to co-culture further enhances the kinetics of IIA response, with the degree of enhancement dependent on the relative cell densities. These results demonstrate the pivotal role of the cell seeding density of normal and precancerous cells in modulating both AD and IIA. These results further support the proposition that ionizing radiation could result in an enhancement in the rate of removal of precancerous cells through the IIA process.


Assuntos
Lesões Pré-Cancerosas , Radiação Ionizante , Apoptose/fisiologia , Contagem de Células , Humanos , Cinética , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
6.
Int J Radiat Oncol Biol Phys ; 111(5): 1250-1261, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400268

RESUMO

PURPOSE: Preclinical studies using ultra-high dose rate (FLASH) irradiation have demonstrated reduced normal tissue toxicity compared with conventional dose rate (CONV) irradiation, although this finding is not universal. We investigated the effect of temporal pulse structure and average dose rate of FLASH compared with CONV irradiation on acute intestinal toxicity. MATERIALS AND METHODS: Whole abdomens of C3H mice were irradiated with a single fraction to various doses, using a 6 MeV electron linear accelerator with single pulse FLASH (dose rate = 2-6 × 106 Gy/s) or conventional (CONV; 0.25 Gy/s) irradiation. At 3.75 days postirradiation, fresh feces were collected for 16S rRNA sequencing to assess changes in the gut microbiota. A Swiss roll-based crypt assay was used to quantify acute damage to the intestinal crypts to determine how tissue toxicity was affected by the different temporal pulse structures of FLASH delivery. RESULTS: We found statistically significant improvements in crypt survival for mice irradiated with FLASH at doses between 7.5 and 12.5 Gy, with a dose modifying factor of 1.1 for FLASH (7.5 Gy, P < .01; 10 Gy, P < .05; 12.5 Gy, P < .01). This sparing effect was lost when the delivery time was increased, either by increasing the number of irradiation pulses or by prolonging the time between 2 successive pulses. Sparing was observed for average dose rates of ≥280 Gy/s. Fecal microbiome analysis showed that FLASH irradiation caused fewer changes to the microbiota than CONV irradiation. CONCLUSIONS: This study demonstrates that FLASH irradiation can spare mouse small intestinal crypts and reduce changes in gut microbiome composition compared with CONV irradiation. The higher the average dose rate, the larger the FLASH effect, which is also influenced by temporal pulse structure of the delivery.


Assuntos
Trato Gastrointestinal , Aceleradores de Partículas , Animais , Camundongos , Camundongos Endogâmicos C3H , RNA Ribossômico 16S , Dosagem Radioterapêutica
7.
Front Oncol ; 11: 671431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277417

RESUMO

Ionizing radiation (IR) principally acts through induction of DNA damage that promotes cell death, although the biological effects of IR are more broad ranging. In fact, the impact of IR of higher-linear energy transfer (LET) on cell biology is generally not well understood. Critically, therefore, the cellular enzymes and mechanisms responsible for enhancing cell survival following high-LET IR are unclear. To this effect, we have recently performed siRNA screening to identify deubiquitylating enzymes that control cell survival specifically in response to high-LET α-particles and protons, in comparison to low-LET X-rays and protons. From this screening, we have now thoroughly validated that depletion of the ubiquitin-specific protease 9X (USP9X) in HeLa and oropharyngeal squamous cell carcinoma (UMSCC74A) cells using small interfering RNA (siRNA), leads to significantly decreased survival of cells after high-LET radiation. We consequently investigated the mechanism through which this occurs, and demonstrate that an absence of USP9X has no impact on DNA damage repair post-irradiation nor on apoptosis, autophagy, or senescence. We discovered that USP9X is required to stabilize key proteins (CEP55 and CEP131) involved in centrosome and cilia formation and plays an important role in controlling pericentrin-rich foci, particularly in response to high-LET protons. This was also confirmed directly by demonstrating that depletion of CEP55/CEP131 led to both enhanced radiosensitivity of cells to high-LET protons and amplification of pericentrin-rich foci. Our evidence supports the importance of USP9X in maintaining centrosome function and biogenesis and which is crucial particularly in the cellular response to high-LET radiation.

8.
Phys Med Biol ; 66(14)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34130265

RESUMO

Purpose.To develop a framework to include oxygenation effects in radiation therapy treatment planning which is valid for all modalities, energy spectra and oxygen levels. The framework is based on predicting the difference in DNA-damage resulting from ionising radiation at variable oxygenation levels.Methods.Oxygen fixation is treated as a statistical process in a simplified model of complex and simple damage. We show that a linear transformation of the microscopic oxygen fixation process allows to extend this to all energies and modalities, resulting in a relatively simple rational polynomial expression. The model is expanded such that it can be applied for polyenergetic beams. The methodology is validated using Microdosimetric Monte Carlo Damage Simulation code (MCDS). This serves as a bootstrap to determine relevant parameters in the analytical expression, as MCDS is shown to be extensively verified with published empirical data. Double-strand break induction as calculated by this methodology is compared to published proton experiments. Finally, an example is worked out where the oxygen enhancement ratio (OER) is calculated at different positions in a clinically relevant spread out Bragg peak (SOBP) dose deposition in water. This dose deposition is obtained using a general Monte Carlo code (FLUKA) to determine dose deposition and locate fluence spectra.Results.For all modalities (electrons, protons), the damage categorised as complex could be parameterised to within 0.3% of the value calculated using microdosimetric Monte Carlo. The proton beam implementation showed some variation in OERs which differed slightly depending on where the assessment was made; before the SOBP, mid-SOBP or at the distal edge. Environment oxygenation was seen to be the more important variable.Conclusions.An analytic expression calculating complex damage depending on modality, energy spectrum, and oxygenation levels was shown to be effective and can be readily incorporated in treatment planning software, to take into account the impact of variable oxygenation, forming a first step to an optimised treatment based on biological factors.


Assuntos
Terapia com Prótons , DNA , Método de Monte Carlo , Oxigênio , Eficiência Biológica Relativa
9.
Br J Cancer ; 124(11): 1809-1819, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33742147

RESUMO

BACKGROUND: The radiosensitising effect of the poly(ADP-ribose) polymerase inhibitor olaparib on tumours has been reported. However, its effect on normal tissues in combination with radiation has not been well studied. Herein, we investigated the therapeutic index of olaparib combined with hemithoracic radiation in a urethane-induced mouse lung cancer model. METHODS: To assess tolerability, A/J mice were treated with olaparib plus whole thorax radiation (13 Gy), body weight changes were monitored and normal tissue effects were assessed by histology. In anti-tumour (intervention) studies, A/J mice were injected with urethane to induce lung tumours, and were then treated with olaparib alone, left thorax radiation alone or the combination of olaparib plus left thorax radiation at 8 weeks (early intervention) or 18 weeks (late intervention) after urethane injection. Anti-tumour efficacy and normal tissue effects were assessed by visual inspection, magnetic resonance imaging and histology. RESULTS: Enhanced body weight loss and oesophageal toxicity were observed when olaparib was combined with whole thorax but not hemithorax radiation. In both the early and late intervention studies, olaparib increased the anti-tumour effects of hemithoracic irradiation without increasing lung toxicity. CONCLUSIONS: The addition of olaparib increased the therapeutic index of hemithoracic radiation in a mouse model of lung cancer.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Modelos Animais de Doenças , Feminino , Neoplasias Pulmonares/patologia , Camundongos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Radiossensibilizantes/uso terapêutico , Índice Terapêutico , Tórax/efeitos da radiação , Resultado do Tratamento
10.
Antioxidants (Basel) ; 11(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35052515

RESUMO

Haematopoietic bone marrow cells are amongst the most sensitive to ionizing radiation (IR), initially resulting in cell death or genotoxicity that may later lead to leukaemia development, most frequently Acute Myeloid Leukaemia (AML). The target cells for radiation-induced Acute Myeloid Leukaemia (rAML) are believed to lie in the haematopoietic stem and progenitor cell (HSPC) compartment. Using the inbred strain CBA/Ca as a murine model of rAML, progress has been made in understanding the underlying mechanisms, characterisation of target cell population and responses to IR. Complex regulatory systems maintain haematopoietic homeostasis which may act to modulate the risk of rAML. However, little is currently known about the role of metabolic factors and diet in these regulatory systems and modification of the risk of AML development. This study characterises cellular proliferative and clonogenic potential as well as metabolic changes within murine HSPCs under oxidative stress and X-ray exposure. Ambient oxygen (normoxia; 20.8% O2) levels were found to increase irradiated HSPC-stress, stimulating proliferative activity compared to low oxygen (3% O2) levels. IR exposure has a negative influence on the proliferative capability of HSPCs in a dose-dependent manner (0-2 Gy) and this is more pronounced under a normoxic state. One Gy x-irradiated HSPCs cultured under normoxic conditions displayed a significant increase in oxygen consumption compared to those cultured under low O2 conditions and to unirradiated HSPCs. Furthermore, mitochondrial analyses revealed a significant increase in mitochondrial DNA (mtDNA) content, mitochondrial mass and membrane potential in a dose-dependent manner under normoxic conditions. Our results demonstrate that both IR and normoxia act as stressors for HSPCs, leading to significant metabolic deregulation and mitochondrial dysfunctionality which may affect long term risks such as leukaemia.

11.
Biology (Basel) ; 10(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379152

RESUMO

PURPOSE: To study the induction of genomic instability (GI) in the progeny of cell populations irradiated with low doses of alpha-particles and the potential role of exosome-encapsulated bystander signalling. METHODS: The induction of GI in HF19 normal fibroblast cells was assessed by determining the formation of micronuclei (MN) in binucleate cells along with using the alkaline comet assay to assess DNA damage. RESULTS: Low dose alpha-particle exposure (0.0001-1 Gy) was observed to produce a significant induction of micronuclei and DNA damage shortly after irradiation (assays performed at 5 and 1 h post exposure, respectively). This damage was not only still evident and statistically significant in all irradiated groups after 10 population doublings, but similar trends were observed after 20 population doublings. Exosomes from irradiated cells were also observed to enhance the level of DNA damage in non-irradiated bystander cells at early times. CONCLUSION: very low doses of alpha-particles are capable of inducing GI in the progeny of irradiated cells even at doses where <1% of the cells are traversed, where the level of response was similar to that observed at doses where 100% of the cells were traversed. This may have important implications with respect to the evaluation of cancer risk associated with very low-dose alpha-particle exposure and deviation from a linear dose response.

12.
Biochem Biophys Res Commun ; 531(4): 535-542, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32807492

RESUMO

INTRODUCTION: Pre-clinical testing of small molecules for therapeutic development across many pathologies relies on the use of in-vitro and in-vivo models. When designed and implemented well, these models serve to predict the clinical outcome as well as the toxicity of the evaluated therapies. The two-dimensional (2D) reductionist approach where cells are incubated in a mono-layer on hard plastic microtiter plates is relatively inexpensive but not physiologically relevant. In contrast, well developed and applied three dimensional (3D) in vitro models could be employed to bridge the gap between 2D in vitro primary screening and expensive in vivo rodent models by incorporating key features of the tissue microenvironment to explore differentiation, cortical development, cancers and various neuronal dysfunctions. These features include an extracellular matrix, co-culture, tension and perfusion and could replace several hundred rodents in the drug screening validation cascade. METHODS: Human neural progenitor cells from middle brain (ReN VM, Merck Millipore, UK) were expanded as instructed by the supplier (Merck Millipore, UK), and then seeded in 96-well low-attachment plates (Corning, UK) to form multicellular spheroids followed by adding a Matrigel layer to mimic extracellular matrix around neural stem cell niche. ReN VM cells were then differentiated via EGF and bFGF deprivation for 7 days and were imaged at day 7. Radiotherapy was mimicked via gamma-radiation at 2Gy in the absence and presence of selected DYRK1A inhibitors Harmine, INDY and Leucettine 41 (L41). Cell viability was measured by AlamarBlue assay. Immunofluorescence staining was used to assess cell pluripotency marker SOX2 and differentiation marker GFAP. RESULTS: After 7 days of differentiation, neuron early differentiation marker (GFAP, red) started to be expressed among the cells expressing neural stem cell marker SOX2 (green). Radiation treatment caused significant morphology change including the reduced viability of the spheroids. These spheroids also revealed sensitizing potential of DYRK1A inhibitors tested in this study, including Harmine, INDY and L41. DISCUSSION & CONCLUSIONS: Combined with the benefit of greatly reducing the issues associated with in vivo rodent models, including reducing numbers of animals used in a drug screening cascade, cost, ethics, and potential animal welfare burden, we feel the well-developed and applied 3D neural spheroid model presented in this study will provide a crucial tool to evaluate combinatorial therapies, optimal drug concentrations and treatment dosages.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Neurais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Esferoides Celulares/efeitos dos fármacos , Linhagem Celular , Colágeno , Dioxóis/farmacologia , Combinação de Medicamentos , Matriz Extracelular , Raios gama , Harmina/farmacologia , Humanos , Imidazóis/farmacologia , Laminina , Células-Tronco Neurais/efeitos da radiação , Neuritos/efeitos dos fármacos , Proteoglicanas , Radiossensibilizantes/farmacologia , Fatores de Transcrição SOXB1/metabolismo , Esferoides Celulares/efeitos da radiação , Quinases Dyrk
13.
Phys Med Biol ; 64(22): 225010, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31665711

RESUMO

This paper considers the kinematic physical characteristics of ionic beams for maximum relative bio-effectiveness (RBE). RBE studies, based on heterogenous cell survival studies at different laboratories and linear energy transfer (LET) conditions for proton, helium, carbon, neon and argon ions, have been further analysed to determine the LETU values where RBE is maximal and the LET-RBE relationship has a turnover point. The SRIM stopping power software and other classical equations are used to determine the particle velocities, kinetic energies and their effective ionic charges at LETU. The estimated mean LETU values increase with atomic number (Z). Each LETU has a unique relativistic velocity, ß = v/c, the velocity v expressed as a fraction of the speed of light, (c), and which is non-linearly proportional to Z. For ions helium and heavier ions, these velocities indicate that the effective charge Z * is around 0.99 of the full Z value at each LETU, with remarkably stable velocities of 3-4 nm · fs-1 per nucleon, or around 6-8 nm · fs-1 per unit Z. For Z = 1, (protons and deuterium) some values fall outside these ranges but the result depends on the mix of proton and deuterium used in experiments. An alternative index of ßA/Z 2 (A is the atomic mass number), suggests an average velocity of around 15 nm · fs-1 for each particle at LETU. These distances, traversed in the time of the radiochemical process initiation, are all within the dimensions of the nucleosome. Curve fitting of the data set provides a predictive equation for LETU for any ion, as LETU = 30.4 + [Formula: see text] (1 - Exp[-0.61 √ (Z - 1)]) when normalised to protons. These data can be extended to heavier ions such as silicon and iron and give values that are consistent with experimental data. Each ion probably has a unique LETU value. Kinematic studies show maximum bio-effectiveness occurs at particle velocities where electron stripping remains at around 99% and where the velocity per nucleon is around 3-4 nm · fs-1. This study enhances the limited prior knowledge about the physical conditions of particle beams that provide maximum bio-effectiveness, with applications in particle radiotherapy, radiation protection and space travel.


Assuntos
Transferência Linear de Energia , Eficiência Biológica Relativa , Fenômenos Biomecânicos , Sobrevivência Celular/efeitos da radiação , Íons Pesados , Humanos , Proteção Radiológica
14.
J Toxicol Environ Health B Crit Rev ; 22(7-8): 244-263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637961

RESUMO

Since the inception of the International Agency for Research on Cancer (IARC) in the early 1970s, the IARC Monographs Programme has evaluated more than 1000 agents with respect to carcinogenic hazard; of these, up to and including Volume 119 of the IARC Monographs, 120 agents met the criteria for classification as carcinogenic to humans (Group 1). Volume 100 of the IARC Monographs provided a review and update of Group 1 carcinogens. These agents were divided into six broad categories: (I) pharmaceuticals; (II) biological agents; (III) arsenic, metals, fibers, and dusts; (IV) radiation; (V) personal habits and indoor combustions; and (VI) chemical agents and related occupations. Data on biological mechanisms of action (MOA) were extracted from the Monographs to assemble a database on the basis of ten key characteristics attributed to human carcinogens. After some grouping of similar agents, the characteristic profiles were examined for 86 Group 1 agents for which mechanistic information was available in the IARC Monographs up to and including Volume 106, based upon data derived from human in vivo, human in vitro, animal in vivo, and animal in vitro studies. The most prevalent key characteristic was "is genotoxic", followed by "alters cell proliferation, cell death, or nutrient supply" and "induces oxidative stress". Most agents exhibited several of the ten key characteristics, with an average of four characteristics per agent, a finding consistent with the notion that cancer development in humans involves multiple pathways. Information on the key characteristics was often available from multiple sources, with many agents demonstrating concordance between human and animal sources, particularly with respect to genotoxicity. Although a detailed comparison of the characteristics of different types of agents was not attempted here, the overall characteristic profiles for pharmaceutical agents and for chemical agents and related occupations appeared similar. Further in-depth analyses of this rich database of characteristics of human carcinogens are expected to provide additional insights into the MOA of human cancer development.


Assuntos
Carcinógenos/toxicidade , Mutagênicos/toxicidade , Neoplasias/induzido quimicamente , Animais , Carcinogênese/induzido quimicamente , Testes de Carcinogenicidade , Humanos , Agências Internacionais , Mutagênese , Neoplasias/patologia
15.
Front Physiol ; 10: 1144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632280

RESUMO

Treatment with ionizing radiation (IR) remains the cornerstone of therapy for multiple cancer types, including disseminated and aggressive diseases in the palliative setting. Radiotherapy efficacy could be improved in combination with drugs that regulate the ubiquitin-proteasome system (UPS), many of which are currently being tested in clinical trials. The UPS operates through the covalent attachment of ATP-activated ubiquitin molecules onto substrates following the transfer of ubiquitin from an E1, to an E2, and then to the substrate via an E3 enzyme. The specificity of ubiquitin ligation is dictated by E3 ligases, which select substrates to be ubiquitylated. Among the E3s, cullin ring ubiquitin ligases (CRLs) represent prototypical multi-subunit E3s, which use the cullin subunit as a central assembling scaffold. CRLs have crucial roles in controlling the cell cycle, hypoxia signaling, reactive oxygen species clearance and DNA repair; pivotal factors regulating the cancer and normal tissue response to IR. Here, we summarize the findings on the involvement of CRLs in the response of cancer cells to IR, and we discuss the therapeutic approaches to target the CRLs which could be exploited in the clinic.

16.
Phys Med Biol ; 64(13): 135018, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31117062

RESUMO

Approximately 50% of all colorectal cancer (CRC) patients will develop metastasis to the liver. 90Y selective internal radiation therapy (SIRT) is an established treatment for metastatic CRC. There is still a fundamental lack of understanding regarding the radiobiology underlying the dose response. This study was designed to determine the radiosensitivity of two CRC cell lines (DLD-1 and HT-29) to 90Y ß - radiation exposure, and thus the relative effectiveness of 90Y SIRT in relation to external beam radiotherapy (EBRT). A 90Y-source dish was sandwiched between culture dishes to irradiate DLD-1 or HT-29 cells for a period of 6 d. Cell survival was determined by clonogenic assay. Dose absorbed per 90Y disintegration was calculated using the PENELOPE Monte Carlo code. PENELOPE simulations were benchmarked against relative dose measurements using EBT3 GAFchromic™ film. Statistical regression based on the linear-quadratic model was used to determine the radiosensitivity parameters [Formula: see text] and [Formula: see text] using R. These results were compared to radiosensitivity parameters determined for 6 MV clinical x-rays and 137Cs γ-ray exposure. Equivalent dose of EBRT in 2 Gy ([Formula: see text]) and 10 Gy ([Formula: see text]) fractions were derived for 90Y dose. HT-29 cells were more radioresistant than DLD-1 for all treatment modalities. Radiosensitivity parameters determined for 6 MV x-rays and 137Cs γ-ray were equivalent for both cell lines. The [Formula: see text] ratio for 90Y ß --particle exposure was over an order of magnitude higher than the other two modalities due to protraction of dose delivery. Consequently, an 90Y SIRT absorbed dose of 60 Gy equates to an [Formula: see text] of 28.7 and 54.5 Gy and an [Formula: see text] of 17.6 and 19.3 Gy for DLD-1 and HT-29 cell lines, respectively. We derived radiosensitivity parameters for two CRC cell lines exposed to 90Y ß --particles, 6 MV x-rays, and 137Cs γ-ray irradiation. These radiobiological parameters are critical to understanding the dose response of CRC lesions and ultimately informs the efficacy of 90Y SIRT relative to other radiation therapy modalities.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Embolização Terapêutica , Tolerância a Radiação , Radioisótopos de Ítrio/uso terapêutico , Partículas beta/uso terapêutico , Raios gama/uso terapêutico , Humanos , Método de Monte Carlo , Radiobiologia , Planejamento da Radioterapia Assistida por Computador
17.
Biomolecules ; 9(5)2019 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-31083605

RESUMO

Breast cancer is the most commonly occurring cancer in women worldwide and the second most common cancer overall. The development of new therapies to treat this devastating malignancy is needed urgently. Nanoparticles are one class of nanomaterial with multiple applications in medicine, ranging from their use as drug delivery systems and the promotion of changes in cell morphology to the control of gene transcription. Nanoparticles made of the natural polymer chitosan are easy to produce, have a very low immunogenic profile, and diffuse easily into cells. One hallmark feature of cancer, including breast tumours, is the genome instability caused by defects in the spindle-assembly checkpoint (SAC), the molecular signalling mechanism that ensures the timely and high-fidelity transmission of the genetic material to an offspring. In recent years, the use of nanoparticles to treat cancer cells has gained momentum. This is in part because nanoparticles made of different materials can sensitise cancer cells to chemotherapy and radiotherapy. These advances prompted us to study the potential sensitising effect of chitosan-based nanoparticles on breast cancer cells treated with reversine, which is a small molecule inhibitor of Mps1 and Aurora B that induces premature exit from mitosis, aneuploidy, and cell death, before and after exposure of the cancer cells to X-ray irradiation. Our measurements of metabolic activity as an indicator of cell viability, DNA damage by alkaline comet assay, and immunofluorescence using anti-P-H3 as a mitotic biomarker indicate that chitosan nanoparticles elicit cellular responses that affect mitosis and cell viability and can sensitise breast cancer cells to X-ray radiation (2Gy). We also show that such a sensitisation effect is not caused by direct damage to the DNA by the nanoparticles. Taken together, our data indicates that chitosan nanoparticles have potential application for the treatment of breast cancer as adjunct to radiotherapy.


Assuntos
Antineoplásicos/farmacologia , Quitosana/análogos & derivados , Mitose/efeitos dos fármacos , Morfolinas/farmacologia , Nanopartículas/química , Purinas/farmacologia , Antineoplásicos/administração & dosagem , Aurora Quinase B/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Humanos , Células MCF-7 , Mitose/efeitos da radiação , Morfolinas/administração & dosagem , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Purinas/administração & dosagem , Raios X
18.
Int J Radiat Oncol Biol Phys ; 104(3): 656-665, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851349

RESUMO

PURPOSE: Ionizing radiation, particular high-linear energy transfer (LET) radiation, can induce complex DNA damage (CDD) wherein 2 or more DNA lesions are induced in close proximity, which contributes significantly to the cell killing effects. However, knowledge of the enzymes and mechanisms involved in coordinating the recognition and processing of CDD in cellular DNA are currently lacking. METHODS AND MATERIALS: A small interfering RNA screen of deubiquitylation enzymes was conducted in HeLa cells irradiated with high-LET α-particles or protons, versus low-LET protons and x-rays, and cell survival was monitored by clonogenic assays. Candidates whose depletion led to decreased cell survival specifically in response to high-LET radiation were validated in both HeLa and oropharyngeal squamous cell carcinoma (UMSCC74A) cells, and the association with CDD repair was confirmed using an enzyme modified neutral comet assay. RESULTS: Depletion of USP6 decreased cell survival specifically after high-LET α-particles and protons, but not low-LET protons or x-rays. USP6 depletion caused cell cycle arrest and a deficiency in CDD repair mediated through instability of poly(ADP-ribose) polymerase-1 (PARP-1) protein. Increased radiosensitivity of cells to high-LET protons as a consequence of defective CDD repair was furthermore mimicked using the PARP inhibitor olaparib, and through PARP-1 small interfering RNA. CONCLUSIONS: USP6 controls cell survival in response to high-LET radiation by stabilizing PARP-1 protein levels, which is essential for CDD repair. We also describe synergy between CDD induced by high-LET protons and PARP inhibition, or PARP-1 depletion, in effective cancer cell killing.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas Proto-Oncogênicas/deficiência , Radiação Ionizante , Ubiquitina Tiolesterase/deficiência , Partículas alfa , Carcinoma de Células Escamosas , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Células HeLa , Humanos , Transferência Linear de Energia , Neoplasias Orofaríngeas , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Prótons , RNA Interferente Pequeno , Tolerância a Radiação
19.
J Radiosurg SBRT ; 6(1): 1-9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775069

RESUMO

The importance of effects related to the repair of sublethal radiation damage as treatment duration varies, partly a function of dose-rate, is a current controversy in clinical radiosurgery. Cell survival studies have been performed to verify the importance of this effect in relation to established models. Mammalian V79-4 cells were irradiated in vitro with γ-rays, either as an acute exposure in a few minutes, where the effects of sublethal irradiation damage repair over the period of exposure can be ignored, or as protracted exposures delivered over 15-120 min. Protraction was achieved either by introducing a variable time gap between two doses of 7 Gy, or as a continuous exposure at lower dose rates so that a range of doses were delivered in fixed times of 30, 60 or 120 min. For all doses there was a progressive reduction in efficacy with increasing overall treatment time. This was illustrated by the progressive increase in clonogenic cell survival with a resulting right shift of the survival curves. Cell survival curves for irradiations given either as an acute exposure (6.1 Gy/min), over fixed times (30, 60 and 120 min) or for a fixed low dose-rate (0.2 Gy/min) were well fitted by the Linear Quadratic (LQ) model giving an α/ß ratio of 4.0 Gy and a single repair half-time of 31.5 min. The present results are consistent with published data with respect to the response of solid tumors and normal tissues, whose response to both continuous and fractionated irradiation is also well described by the LQ model. This suggests the need for dose compensation in radiosurgical treatments, and other forms of radiotherapy, where dose is delivered over a similar range of protracted overall treatment times, perhaps as a prerequisite to full biological effective dose treatment planning.

20.
Radiat Prot Dosimetry ; 183(1-2): 264-269, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726978

RESUMO

Human exposure to α-particles from radon and other radionuclides is associated with carcinogenesis, but if well controlled and targeted to cancer cells, α-particles may be used in radiotherapy. Thus, it is important to understand the biological effects of α-particles to predict cancer risk and optimise radiotherapy. To enable studies of α-particles in cells, we developed and characterised an α-particle automated irradiation rig that allows exposures at a shallow angle (70° to the normal) of cell monolayers in a 30 mm diameter dish to complement standard perpendicular irradiations. The measured incident energy of the α-particles was 3.3 ± 0.5 MeV (LET in water = 120 keV µm-1), with a maximum incident dose rate of 1.28 ± 0.02 Gy min-1, which for a 5 µm cell monolayer corresponds to a mean dose rate of 1.57 ± 0.02 Gy min-1 and a mean LET in water of 154 keV µm-1. The feasibility of resolving radiation-induced DNA double-strand breaks (DSB) foci along the track of α-particles was demonstrated using immunofluorescent labelling with γH2AX and 53BP1 in normal MRC-5 human lung cells.


Assuntos
Partículas alfa , Células Cultivadas/efeitos da radiação , Pulmão/citologia , Radiobiologia/instrumentação , Quebras de DNA de Cadeia Dupla , Desenho de Equipamento , Humanos , Transferência Linear de Energia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA