Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plast Reconstr Surg ; 153(2): 334e-347e, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163479

RESUMO

BACKGROUND: Current minimally invasive fat reduction modalities use equipment that can cost thousands of U.S. dollars. Electrochemical lipolysis (ECLL), using low-cost battery and electrodes (approximately $10), creates acid/base within fat (width, approximately 3 mm), damaging adipocytes. Longitudinal effects of ECLL have not been studied. In this pilot study, the authors hypothesize that in vivo ECLL induces fat necrosis, decreases adipocyte number/viability, and forms lipid droplets. METHODS: Two female Yorkshire pigs (50 to 60 kg) received ECLL. In pig 1, 10 sites received ECLL, and 10 sites were untreated. In pig 2, 12 sites received ECLL and 12 sites were untreated. For ECLL, two electrodes were inserted into dorsal subcutaneous fat and direct current was applied for 5 minutes. Adverse effects of excessive pain, bleeding, infection, and agitation were monitored. Histology, live-dead (calcein, Hoechst, ethidium homodimer-1), and morphology (Bodipy and Hoechst) assays were performed on day 0 and postprocedure days 1, 2, 7, 14 (pig 1 and pig 2), and 28 (pig 2). Average particle area, fluorescence signal areas, and adipocytes and lipid droplet numbers were compared. RESULTS: No adverse effects occurred. Live-dead assays showed adipocyte death on the anode on days 0 to 7 and the cathode on days 1 to 2 (not significant). Bodipy showed significant adipocyte loss at all sites ( P < 0.001) and lipid droplet formation at the cathode site on day 2 ( P = 0.0046). Histology revealed fat necrosis with significant increases in average particle area at the anode and cathode sites by day 14 (+277.3% change compared with untreated, P < 0.0001; +143.4%, P < 0.0001) and day 28 (+498.6%, P < 0.0001; +354.5%, P < 0.0001). CONCLUSIONS: In vivo ECLL induces fat necrosis in pigs. Further studies are needed to evaluate volumetric fat reduction. CLINICAL RELEVANCE STATEMENT: In vivo ECLL induces adipocyte death and fat necrosis. ECLL has the potential to be utilized in body fat contouring.


Assuntos
Compostos de Boro , Necrose Gordurosa , Lipólise , Feminino , Animais , Suínos , Projetos Piloto , Adipócitos
2.
Lasers Surg Med ; 55(1): 135-145, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511512

RESUMO

OBJECTIVES: Traditional fat contouring is now regularly performed using numerous office- based less invasive techniques. However, some limitations of these minimally invasive techniques include high cost or limited selectivity with performing localized contouring and reduction of fat. These shortcomings may potentially be addressed by electrochemical lipolysis (ECLL), a novel approach that involves the insertion of electrodes into tissue followed by application of a direct current (DC) electrical potential. This results in the hydrolysis of tissue water creating active species that lead to fat necrosis and apoptosis. ECLL can be accomplished using a simple voltage-driven system (V-ECLL) or a potential-driven feedback cell (P-ECLL) both leading to water electrolysis and the creation of acid and base in situ. The aim of this study is to determine the long-lasting effects of targeted ECLL in a Yucatan pig model. METHODS: A 5-year-old Yucatan pig was treated with both V-ECLL and P-ECLL in the subcutaneous fat layer using 80:20 platinum:iridium needle electrodes along an 8 cm length. Dosimetry parameters included 5 V V-ECLL for 5, 10, and 20 minutes, and -1.5 V P-ECLL, -2.5 V P-ECLL, -3.5 V P-ECLL for 5 minutes. The pig was assessed for changes in fat reduction over 3 months with digital photography and ultrasound. After euthanasia, tissue sections were harvested and gross pathology and histology were examined. RESULTS: V-ECLL and P-ECLL treatments led to visible fat reduction (12.1%-27.7% and 9.4%-40.8%, respectively) and contour changes across several parameters. An increased reduction of the superficial fat layer occurred with increased dosimetry parameters with an average charge transfer of 12.5, 24.3, and 47.5 C transferred for 5 V V-ECLL for 5, 10, and 20 minutes, respectively, and 2.0, 11.5, and 24.0 C for -1.5 V P-ECLL, -2.5 V P-ECLL, -3.5 V P-ECLL for 5 minutes, respectively. These dose-dependent changes were also evidenced by digital photography, gross pathology, ultrasound imaging, and histology. CONCLUSIONS: ECLL results in selective damage and long-lasting changes to the adipose layer in vivo. These changes are dose-dependent, thus allowing for more precise contouring of target areas. P-ECLL has greater efficiency and control of total charge transfer compared to V-ECLL, suggesting that a low-voltage potentiostat treatment can result in fat apoptosis equivalent to a high-voltage DC system.


Assuntos
Lipectomia , Lipólise , Animais , Suínos , Estudo de Prova de Conceito , Gordura Subcutânea/diagnóstico por imagem , Lipectomia/métodos , Ultrassonografia
3.
Lasers Surg Med ; 54(1): 157-169, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34412154

RESUMO

OBJECTIVES: Minimally invasive fat sculpting techniques are becoming more widespread with the development of office-based devices and therapies. Electrochemical lipolysis (ECLL) is a needle-based technology that uses direct current (DC) to electrolyze tissue water creating acid and base in situ. In turn, fat is saponified and adipocyte cell membrane lysis occurs. The electrolysis of water can be accomplished using a simple open-loop circuit (V-ECLL) or by incorporating a feedback control circuit using a potentiostat (P-ECLL). A potentiostat utilizes an operational amplifier with negative feedback to allow users to precisely control voltage at specific electrodes. To date, the variation between the two approaches has not been studied. The aim of this study was to assess current and charge transfer variation and lipolytic effect created by the two approaches in an in vivo porcine model. METHODS: Charge transfer measurements from ex vivo V-ECLL and P-ECLL treated porcine skin and fat were recorded at -1 V P-ECLL, -2 V P-ECLL, -3 V P-ECLL, and -5 V V-ECLL each for 5 min to guide dosimetry parameters for in vivo studies. In follow-up in vivo studies, a sedated female Yorkshire pig was treated with both V-ECLL and P-ECLL across the dorsal surface over a range of dosimetry parameters, including -1.5 V P-ECLL, -2.5 V P-ECLL, -3.5 V P-ECLL, and 5 V V-ECLL each treated for 5 min. Serial biopsies were performed at baseline before treatment, 1, 2, 7, 14, and 28 days after treatment. Tissue was examined using fluorescence microscopy and histology to compare the effects of the two ECLL approaches. RESULTS: Both V-ECLL and P-ECLL treatments induced in-vivo fat necrosis evident by adipocyte membrane lysis, adipocyte denuclearization, and an acute inflammatory response across a 28-day longitudinal study. However, -1.5 V P-ECLL produced a smaller spatial necrotic effect compared to 5 V V-ECLL. In addition, 5 V V-ECLL produced a comparable necrotic effect to that of -2.5 V and -3.5 V P-ECLL. CONCLUSIONS: V-ECLL and P-ECLL at the aforementioned dosimetry parameters both achieved fat necrosis by adipocyte membrane lysis and denuclearization. The -2.5 V and -3.5 V P-ECLL treatments created spatially similar fat necrotic effects when compared to the 5 V V-ECLL treatment. Quantitatively, total charge transfer between dosimetry parameters suggests that -2.5 V P-ECLL and 5 V V-ECLL produce comparable electrochemical reactions. Such findings suggest that a low-voltage closed-loop potentiostat-based system is capable of inducing fat necrosis to a similar extent compared to that of a higher voltage direct current system.


Assuntos
Adipócitos , Lipólise , Animais , Estudos de Viabilidade , Retroalimentação , Feminino , Estudos Longitudinais , Suínos
4.
Sci Rep ; 10(1): 20745, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247200

RESUMO

Body contouring achieved via subcutaneous adipose tissue reduction has notably advanced over the past century, from suction assisted lipectomy to techniques with reduced degrees of invasiveness including laser, radiofrequency, high frequency focused ultrasound, cryolipolysis, and drug-based injection approaches. These costly techniques have focused on damaging adipocyte cell membranes, hydrolyzing triglycerides (TGs), or inducing apoptosis. Here, we present a simple, low-cost technique, termed electrochemical lipolysis (ECLL). During ECLL, saline is injected into the subcutaneous adipose tissue, followed by insertion of needle electrodes and application of an electrical potential. Electrolysis of saline creates localized pH gradients that drive adipocyte death and saponification of TGs. Using pH mapping, various optical imaging techniques, and biochemical assays, we demonstrate the ability of ECLL to induce acid and base injury, cell death, and the saponification of triglycerides in ex vivo porcine adipose tissue. We define ECLL's potential role as a minimally-invasive, ultra-low-cost technology for reducing and contouring adipose tissue, and present ECLL as a potential new application of an emerging electrochemical redox based treatment modality.


Assuntos
Tecido Adiposo/patologia , Contorno Corporal/métodos , Técnicas Eletroquímicas/métodos , Lipólise , Triglicerídeos/metabolismo , Tecido Adiposo/metabolismo , Animais , Apoptose , Concentração de Íons de Hidrogênio , Suínos
5.
Chem Commun (Camb) ; 56(26): 3729-3732, 2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32129331

RESUMO

The metal hydration state within a designed coiled coil can be progressively tuned across the full integer range (3 → 0 aqua ligands), by careful choice of a second sphere terminal residue, including the lesser used Trp. Potential implications include a four-fold change in MRI relaxivity when applied to lanthanide coiled coils.


Assuntos
Complexos de Coordenação/química , Gadolínio/química , Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Ligação Proteica
6.
Angew Chem Int Ed Engl ; 55(18): 5497-500, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27059655

RESUMO

An alternative to conventional "cut-and-sew" cartilage surgery, electromechanical reshaping (EMR) is a molecular-based modality in which an array of needle electrodes is inserted into cartilage held under mechanical deformation by a jig. Brief (ca. 2 min) application of an electrochemical potential at the water-oxidation limit results in permanent reshaping of the specimen. Highly sulfated glycosaminoglycans within the cartilage matrix provide structural rigidity to the tissue through extensive ionic-bonding networks; this matrix is highly permselective for cations. Our studies indicate that EMR results from electrochemical generation of localized, low-pH gradients within the tissue: fixed negative charges in the proteoglycan matrix are protonated, resulting in chemically induced stress relaxation of the tissue. Re-equilibration to physiological pH restores the fixed negative charges, and yields remodeled cartilage that retains a new shape approximated by the geometry of the reshaping jig.


Assuntos
Cartilagem/química , Técnicas Eletroquímicas , Técnicas Eletroquímicas/instrumentação , Eletrodos , Concentração de Íons de Hidrogênio
7.
Proc Natl Acad Sci U S A ; 111(42): 14985-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288757

RESUMO

The role of abnormal DNA methyltransferase activity in the development and progression of cancer is an essential and rapidly growing area of research, both for improved diagnosis and treatment. However, current technologies for the assessment of methyltransferase activity, particularly from crude tumor samples, limit this work because they rely on radioactivity or fluorescence and require bulky instrumentation. Here, we report an electrochemical platform that overcomes these limitations for the label-free detection of human DNA(cytosine-5)-methyltransferase1 (DNMT1) methyltransferase activity, enabling measurements from crude cultured colorectal cancer cell lysates (HCT116) and biopsied tumor tissues. Our multiplexed detection system involving patterning and detection from a secondary electrode array combines low-density DNA monolayer patterning and electrocatalytically amplified DNA charge transport chemistry to measure selectively and sensitively DNMT1 activity within these complex and congested cellular samples. Based on differences in DNMT1 activity measured with this assay, we distinguish colorectal tumor tissue from healthy adjacent tissue, illustrating the effectiveness of this two-electrode platform for clinical applications.


Assuntos
Neoplasias Colorretais/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Eletroquímica/métodos , Neoplasias/metabolismo , Catálise , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Eletrodos , Células HCT116 , Humanos
8.
J Inorg Biochem ; 105(10): 1350-3, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21930013

RESUMO

Developing electrode-driven biocatalytic systems utilizing the P450 cytochromes for selective oxidations depends not only on achieving electron transfer (ET) but also doing so at rates that favor native-like turnover. Herein we report studies that correlate rates of heme reduction with ET pathways and resulting product distributions. We utilized single-surface cysteine mutants of the heme domain of P450 from Bacillus megaterium and modified the thiols with N-(1-pyrene)-iodoacetamide, affording proteins that could bond to basal-plane graphite. Of the proteins examined, Cys mutants at position 62, 383, and 387 were able to form electroactive monolayers with similar E(1/2) values (-335 to -340mV vs AgCl/Ag). Respective ET rates (k(s)(o)) and heme-cysteine distances for 62, 383, and 387 are 50 s(-1) and 16Ǻ, 0.8 s(-1) and 25Ǻ, and 650 s(-1) and 19Ǻ. Experiments utilizing rotated-disk electrodes were conducted to determine the products of P450-catalyzed dioxygen reduction. We found good agreement between ET rates and product distributions for the various mutants, with larger k(s)(o) values correlating with more electrons transferred per dioxygen during catalysis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Eletroquímica/métodos , Oxigênio/química , Bacillus megaterium/enzimologia , Transporte de Elétrons/fisiologia , Oxirredução
9.
J Am Chem Soc ; 128(31): 10320-5, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16881664

RESUMO

We report analyses of electrochemical and spectroscopic measurements on cytochrome P450 BM3 (BM3) in didodecyldimethylammonium bromide (DDAB) surfactant films. Electronic absorption spectra of BM3-DDAB films on silica slides reveal the characteristic low-spin FeIII heme absorption maximum at 418 nm. A prominent peak in the absorption spectrum of BM3 FeII-CO in a DDAB dispersion is at 448 nm; in spectra of aged samples, a shoulder at approximately 420 nm is present. Infrared absorption spectra of the BM3 FeII-CO complex in DDAB dispersions feature a time-dependent shift of the carbonyl stretching frequency from 1950 to 2080 cm(-1). Voltammetry of BM3-DDAB films on graphite electrodes gave the following results: FeIII/II E(1/2) at -260 mV (vs SCE), approximately 300 mV positive of the value measured in solution; DeltaS degrees (rc), DeltaS degrees , and DeltaH degrees values for water-ligated BM3 in DDAB are -98 J mol(-1) K(-1), -163 J mol(-1) K(-1), and -47 kJ mol(-1), respectively; values for the imidazole-ligated enzyme are -8 J mol(-1) K(-1), -73 J mol(-1) K(-1), and -21 kJ mol(-1). Taken together, the data suggest that BM3 adopts a compact conformation within DDAB that in turn strengthens hydrogen bonding interactions with the heme axial cysteine, producing a P420-like species with decreased electron density around the metal center.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Eletroquímica/métodos , Oxigenases de Função Mista/química , Análise Espectral/métodos , Tensoativos/química , NADPH-Ferri-Hemoproteína Redutase
10.
Biochemistry ; 43(38): 12162-76, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15379555

RESUMO

Expression of the truncated (lacking an N-terminal signal sequence) structural gene of Thermus thermophilus cytochrome c(552) in the cytoplasm of Escherichia coli yields both dimeric (rC(557)) and monomeric (rC(552)) cytochrome c-like proteins [Keightley, J. A., et al. (1998) J. Biol. Chem. 273, 12006-12016], which form spontaneously without the involvement of cytochrome c maturation factors. Cytochrome rC(557) is comprised of a dimer and has been structurally characterized [McRee, D., et al. (2001) J. Biol. Chem. 276, 6537-6544]. Unexpectedly, the monomeric rC(552) transforms spontaneously to a cytochrome-like chromophore having, in its reduced state, the Q(oo) transition (alpha-band) at 572 nm (therefore called p572). The X-ray crystallographic structure of rC(552), at 1.41 A resolution, shows that the 2-vinyl group of heme ring I is converted to a [heme-CO-CH(2)-S-CH(2)-C(alpha)] conjugate with cysteine 11. Electron density maps obtained from isomorphous crystals of p572 at 1.61 A resolution reveal that the 2-vinyl group has been oxidized to a formyl group. This explains the lower energy of the Q(oo)() transition, the presence of a new, high-frequency band in the resonance Raman spectra at 1666 cm(-1) for oxidized and at 1646 cm(-1) for reduced samples, and the greatly altered, paramagnetically shifted (1)H NMR spectrum observed for this species. The overall process defines a novel mechanism for oxidation of the 2-vinyl group to a 2-formyl group and adds to the surprising array of chemical reactions that occur in the interaction of heme with the CXXCH sequence motif in apocytochromes c.


Assuntos
Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Citoplasma/metabolismo , Escherichia coli/metabolismo , Heme/análogos & derivados , Heme/metabolismo , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Dicroísmo Circular , Cristalografia por Raios X , Grupo dos Citocromos b/química , Grupo dos Citocromos b/metabolismo , Grupo dos Citocromos c/química , Grupo dos Citocromos c/isolamento & purificação , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Heme/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Deleção de Sequência/genética , Análise Espectral , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA