Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 29(12): 1757-1773.e10, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34731646

RESUMO

Tolerance and persistence are superficially similar phenomena by which bacteria survive bactericidal antibiotics. It is assumed that the same physiology underlies survival of individual tolerant and persistent bacteria. However, by comparing tolerance and persistence during Salmonella Typhimurium infection, we reveal that these two phenomena are underpinned by different bacterial physiologies. Multidrug-tolerant mutant Salmonella enter a near-dormant state protected from immune-mediated genotoxic damages. However, the numerous tolerant cells, optimized for survival, lack the capabilities necessary to initiate infection relapse following antibiotic withdrawal. In contrast, persisters retain an active state. This leaves them vulnerable to accumulation of macrophage-induced dsDNA breaks but concurrently confers the versatility to initiate infection relapse if protected by RecA-mediated DNA repair. Accordingly, recurrent, invasive, non-typhoidal Salmonella clinical isolates display hallmarks of persistence rather than tolerance during antibiotic treatment. Our study highlights the complex trade-off that antibiotic-recalcitrant Salmonella balance to act as a reservoir for infection relapse.


Assuntos
Antibacterianos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Animais , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Farmacorresistência Bacteriana Múltipla , Tolerância a Medicamentos , Feminino , Interações Hospedeiro-Patógeno , Humanos , Tolerância Imunológica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Folhas de Planta , Recombinases Rec A , Recidiva , Transcriptoma , Sequenciamento Completo do Genoma
2.
Science ; 362(6419): 1156-1160, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523110

RESUMO

Many bacterial infections are hard to treat and tend to relapse, possibly due to the presence of antibiotic-tolerant persisters. In vitro, persister cells appear to be dormant. After uptake of Salmonella species by macrophages, nongrowing persisters also occur, but their physiological state is poorly understood. In this work, we show that Salmonella persisters arising during macrophage infection maintain a metabolically active state. Persisters reprogram macrophages by means of effectors secreted by the Salmonella pathogenicity island 2 type 3 secretion system. These effectors dampened proinflammatory innate immune responses and induced anti-inflammatory macrophage polarization. Such reprogramming allowed nongrowing Salmonella cells to survive for extended periods in their host. Persisters undermining host immune defenses might confer an advantage to the pathogen during relapse once antibiotic pressure is relieved.


Assuntos
Farmacorresistência Bacteriana , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/imunologia , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Células Cultivadas , Feminino , Ilhas Genômicas , Imunidade Inata , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Recidiva , Infecções por Salmonella/microbiologia , Salmonella typhimurium/efeitos dos fármacos
3.
Nature ; 555(7696): 392-396, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29513657

RESUMO

Gametes are highly specialized cells that can give rise to the next generation through their ability to generate a totipotent zygote. In mice, germ cells are first specified in the developing embryo around embryonic day (E) 6.25 as primordial germ cells (PGCs). Following subsequent migration into the developing gonad, PGCs undergo a wave of extensive epigenetic reprogramming around E10.5-E11.5, including genome-wide loss of 5-methylcytosine. The underlying molecular mechanisms of this process have remained unclear, leading to our inability to recapitulate this step of germline development in vitro. Here we show, using an integrative approach, that this complex reprogramming process involves coordinated interplay among promoter sequence characteristics, DNA (de)methylation, the polycomb (PRC1) complex and both DNA demethylation-dependent and -independent functions of TET1 to enable the activation of a critical set of germline reprogramming-responsive genes involved in gamete generation and meiosis. Our results also reveal an unexpected role for TET1 in maintaining but not driving DNA demethylation in gonadal PGCs. Collectively, our work uncovers a fundamental biological role for gonadal germline reprogramming and identifies the epigenetic principles of the PGC-to-gonocyte transition that will help to guide attempts to recapitulate complete gametogenesis in vitro.


Assuntos
Reprogramação Celular/genética , Epigênese Genética , Gametogênese/genética , Células Germinativas/citologia , Células Germinativas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Masculino , Meiose , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA