Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464218

RESUMO

Metabolism has emerged as a key factor in homeostasis and disease including cancer. Yet, little is known about the heterogeneity of metabolic activity of cancer cells due to the lack of tools to directly probe it. Here, we present a novel method, 13C-SpaceM for spatial single-cell isotope tracing of glucose-dependent de novo lipogenesis. The method combines imaging mass spectrometry for spatially-resolved detection of 13C6-glucose-derived 13C label incorporated into esterified fatty acids with microscopy and computational methods for data integration and analysis. We validated 13C-SpaceM on a spatially-heterogeneous normoxia-hypoxia model of liver cancer cells. Investigating cultured cells, we revealed single-cell heterogeneity of lipogenic acetyl-CoA pool labelling degree upon ACLY knockdown that is hidden in the bulk analysis and its effect on synthesis of individual fatty acids. Next, we adapted 13C-SpaceM to analyze tissue sections of mice harboring isocitrate dehydrogenase (IDH)-mutant gliomas. We found a strong induction of de novo fatty acid synthesis in the tumor tissue compared to the surrounding brain. Comparison of fatty acid isotopologue patterns revealed elevated uptake of mono-unsaturated and essential fatty acids in the tumor. Furthermore, our analysis uncovered substantial spatial heterogeneity in the labelling of the lipogenic acetyl-CoA pool indicative of metabolic reprogramming during microenvironmental adaptation. Overall, 13C-SpaceM enables novel ways for spatial probing of metabolic activity at the single cell level. Additionally, this methodology provides unprecedented insight into fatty acid uptake, synthesis and modification in normal and cancerous tissues.

2.
Nanoscale ; 15(3): 1431-1440, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36594515

RESUMO

Determining the porosity of hydrogels is an important component of material characterisation. While scanning electron microscopy (SEM) is a widely used method to study hydrogel nanoarchitecture, it is well-established that SEM sample preparation methods can alter the structure of hydrogels. Herein we describe the impact of sample preparation on the SEM analysis of self-assembling ß-peptide hydrogels. Three methods of hydrogel preparation for SEM were compared, and each method preserved distinctly different nanoarchitecture, specifically, different levels of fibre alignment and porosity. Comparison of conventional SEM preparation and our hybrid method, which comprises high pressure freezing, freeze substitution without fixative and critical point drying, showed a high degree of similarity at the nanometre scale and diverging architecture at the micron scale. This study quantified the impact of chemical fixation versus high pressure freezing on self-assembling ß3-peptide hydrogels, demonstrated the effect of sample preparation on fibre alignment and porosity, and presents a novel hybrid preparation method where chemical fixation can be avoided when conventional SEM is desired.


Assuntos
Hidrogéis , Peptídeos , Hidrogéis/química , Microscopia Eletrônica de Varredura , Congelamento
3.
Cell Rep ; 40(12): 111374, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130496

RESUMO

The egress of Candida hyphae from macrophages facilitates immune evasion, but it also alerts macrophages to infection and triggers inflammation. To better define the mechanisms, here we develop an imaging assay to directly and dynamically quantify hyphal escape and correlate it to macrophage responses. The assay reveals that Candida escapes by using two pore-forming proteins to permeabilize macrophage membranes: the fungal toxin candidalysin and Nlrp3 inflammasome-activated Gasdermin D. Candidalysin plays a major role in escape, with Nlrp3 and Gasdermin D-dependent and -independent contributions. The inactivation of Nlrp3 does not reduce hyphal escape, and we identify ETosis via macrophage extracellular trap formation as an additional pathway facilitating hyphal escape. Suppressing hyphal escape does not reduce fungal loads, but it does reduce inflammatory activation. Our findings explain how Candida escapes from macrophages by using three strategies: permeabilizing macrophage membranes via candidalysin and engaging two host cell death pathways, Gasdermin D-mediated pyroptosis and ETosis.


Assuntos
Candida albicans , Micotoxinas , Candida albicans/metabolismo , Morte Celular , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Hifas/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Micotoxinas/metabolismo , Micotoxinas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
4.
Bioinformatics ; 36(24): 5686-5694, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33367496

RESUMO

MOTIVATION: The forskolin-induced swelling (FIS) assay has become the preferential assay to predict the efficacy of approved and investigational CFTR-modulating drugs for individuals with cystic fibrosis (CF). Currently, no standardized quantification method of FIS data exists thereby hampering inter-laboratory reproducibility. RESULTS: We developed a complete open-source workflow for standardized high-content analysis of CFTR function measurements in intestinal organoids using raw microscopy images as input. The workflow includes tools for (i) file and metadata handling; (ii) image quantification and (iii) statistical analysis. Our workflow reproduced results generated by published proprietary analysis protocols and enables standardized CFTR function measurements in CF organoids. AVAILABILITY AND IMPLEMENTATION: All workflow components are open-source and freely available: the htmrenamer R package for file handling https://github.com/hmbotelho/htmrenamer; CellProfiler and ImageJ analysis scripts/pipelines https://github.com/hmbotelho/FIS_image_analysis; the Organoid Analyst application for statistical analysis https://github.com/hmbotelho/organoid_analyst; detailed usage instructions and a demonstration dataset https://github.com/hmbotelho/FIS_analysis. Distributed under GPL v3.0. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Oncotarget ; 5(15): 6229-42, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25153724

RESUMO

Inhibition of Aurora kinase activity by small molecules is being actively investigated as a potential anti-cancer strategy. A successful therapeutic use of Aurora inhibitors relies on a comprehensive understanding of the effects of inactivating Aurora kinases on cell division, a challenging aim given the pleiotropic roles of those kinases during mitosis. Here we have used the Aurora-A inhibitor MLN8237, currently under phase-I/III clinical trials, in dose-response assays in U2OS human cancer cells synchronously proceeding towards mitosis. By following the behaviour and fate of single Aurora-inhibited cells in mitosis by live microscopy, we show that MLN8237 treatment affects multiple processes that are differentially sensitive to the loss of Aurora-A function. A role of Aurora-A in controlling the orientation of cell division emerges. MLN8237 treatment, even in high doses, fails to induce efficient elimination of dividing cells, or of their progeny, while inducing significant aneuploidy in daughter cells. The results of single-cell analyses show a complex cellular response to MLN8237 and evidence that its effects are strongly dose-dependent: these issues deserve consideration in the light of the design of strategies to kill cancer cells via inhibition of Aurora kinases.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Aneuploidia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Mitose/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/enzimologia , Osteossarcoma/patologia
6.
Methods Cell Biol ; 123: 489-503, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24974044

RESUMO

Obtaining sufficient statistics in quantitative fluorescence microscopy is often hampered by the tedious and time-consuming task of manually locating comparable specimen and repeatedly launching the same acquisition protocol. Recent advances in combining fluorescence microscopy with online image analysis tackle this problem by fully integrating the task of identifying and locating the specimen of interest in an automated acquisition workflow. Here, we describe the general requirements and specific microscope control and image analysis software solutions for implementing such automated online feedback microscopy. We demonstrate the power of the method by two selected applications addressing high-throughput 3D imaging of sparsely parasite-infected tissue culture cells and automated fluorescence recovery after photobleaching experiments to quantify the turnover of vesicular coat proteins at ER exit sites.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Animais , Retículo Endoplasmático/ultraestrutura , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Células Hep G2 , Humanos , Microscopia de Fluorescência/métodos , Plasmodium berghei/fisiologia , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA