Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 14(1): 230407, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38262603

RESUMO

Natural killer (NK) cell deficiency (NKD) is a rare disease in which NK cell function is reduced, leaving affected individuals susceptible to repeated viral infections and cancer. Recently, a patient with NKD was identified carrying compound heterozygous variants of MCM10 (minichromosome maintenance protein 10), an essential gene required for DNA replication, that caused a significant decrease in the amount of functional MCM10. NKD in this patient presented as loss of functionally mature late-stage NK cells. To understand how MCM10 deficiency affects NK cell development, we generated MCM10 heterozygous (MCM10+/-) induced pluripotent stem cell (iPSC) lines. Analyses of these cell lines demonstrated that MCM10 was haploinsufficient, similar to results in other human cell lines. Reduced levels of MCM10 in mutant iPSCs was associated with impaired clonogenic survival and increased genomic instability, including micronuclei formation and telomere erosion. The severity of these phenotypes correlated with the extent of MCM10 depletion. Significantly, MCM10+/- iPSCs displayed defects in NK cell differentiation, exhibiting reduced yields of hematopoietic stem cells (HSCs). Although MCM10+/- HSCs were able to give rise to lymphoid progenitors, these did not generate mature NK cells. The lack of mature NK cells coincided with telomere erosion, suggesting that NKD caused by these MCM10 variants arose from the accumulation of genomic instability including degradation of chromosome ends.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Genes Essenciais , Instabilidade Genômica , Células Matadoras Naturais , Proteínas de Manutenção de Minicromossomo
2.
Front Immunol ; 14: 1060905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911670

RESUMO

New treatments are required to enhance current therapies for lung cancer. Mesothelin is a surface protein overexpressed in non-small cell lung cancer (NSCLC) that shows promise as an immunotherapeutic target in phase I clinical trials. However, the immunosuppressive environment in NSCLC may limit efficacy of these therapies. We applied time-of-flight mass cytometry to examine the state of circulating mononuclear cells in fourteen patients undergoing treatment for unresectable lung cancer. Six patients had earlier stage NSCLC (I-IVA) and eight had highly advanced NSCLC (IVB). The advanced NSCLC patients relapsed with greater frequency than the earlier stage patients. Before treatment, patients with very advanced NSCLC had a greater proportion of CD14- myeloid cells than patients with earlier NSCLC. These patients also had fewer circulating natural killer (NK) cells bearing an Fc receptor, CD16, which is crucial to antibody-dependent cellular cytotoxicity. We designed a high affinity tri-specific killer engager (TriKE®) to enhance NK cytotoxicity against mesothelin+ targets in this environment. The TriKE consisted of CD16 and mesothelin binding elements linked together by IL-15. TriKE enhanced proliferation of lung cancer patient NK cells in vitro. Lung cancer lines are refractory to NK cell killing, but the TriKE enhanced cytotoxicity and cytokine production by patient NK cells when challenged with tumor. Importantly, TriKE triggered NK cell responses from patients at all stages of disease and treatment, suggesting TriKE can enhance current therapies. These pre-clinical studies suggest mesothelin-targeted TriKE has the potential to overcome the immunosuppressive environment of NSCLC to treat disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Mesotelina , Células Matadoras Naturais/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Imunossupressores/metabolismo
3.
Cancer Immunol Res ; 11(5): 674-686, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807510

RESUMO

Immune checkpoint blockade (ICB) has changed the standard of care for many patients with cancer, yet no ICB is approved for ovarian cancer. We hypothesized that maintenance therapy with an IL15 "superagonist" (N-803) and ICB in combination could induce potent immune activation in ovarian cancer. Using flow cytometry, cytometry by time of flight analysis, and cytotoxicity assays, we analyzed patient samples from women with advanced epithelial ovarian cancer treated with N-803 for indications of PD-1/PD-L1 upregulation with this treatment. In addition, ICB and N-803 were evaluated in preclinical studies to determine the functional impact of combination therapy on natural killer (NK) cells in vitro and in vivo. We observed that N-803 stimulated initial NK-cell expansion in patient samples; however, proliferation was not sustained beyond 2 weeks despite continued treatment. This result was reverse translated back to the laboratory to determine the functional relevance of this finding. The addition of ICB with an antibody-dependent cellular cytotoxicity IgG1 antibody against PD-L1 (avelumab) or an IgG4 antibody against PD-1 (pembrolizumab) enhanced N-803 induced NK-cell function in vitro. Using models of human ovarian cancer and NK-cell adoptive transfer in mice, we showed enhanced antitumor control with N-803 and ICB, as well as a combination effect that enhanced NK-cell persistence and expansion in vivo. This work suggests that PD-1/PD-L1 blockade combined with IL15 signaling may overcome resistance to cytokine therapy in ovarian cancer.


Assuntos
Antígeno B7-H1 , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Interleucina-15/farmacologia , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Imunoterapia , Neoplasias Ovarianas/tratamento farmacológico
4.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36162918

RESUMO

BACKGROUND: The tumor microenvironment contains stromal cells, including endothelial cells and fibroblasts, that aid tumor growth and impair immune cell function. Many solid tumors remain difficult to cure because of tumor-promoting stromal cells, but current therapies targeting tumor stromal cells are constrained by modest efficacy and toxicities. TEM8 is a surface antigen selectively upregulated on tumor and tumor stromal cells, endothelial cells and fibroblasts that may be targeted with specific natural killer (NK) cell engagement. METHODS: A Tri-specific Killer Engager (TriKE) against TEM8-'cam1615TEM8'-was generated using a mammalian expression system. Its function on NK cells was assessed by evaluation of degranulation, inflammatory cytokine production, and killing against tumor and stroma cell lines in standard co-culture and spheroid assays. cam1615TEM8-mediated proliferation and STAT5 phosphorylation in NK cells was tested and compared with T cells by flow cytometry. NK cell proliferation, tumor infiltration, and tumor and tumor-endothelium killing by cam1615TEM8 and interleukin-15 (IL-15) were assessed in NOD scid gamma (NSG) mice. RESULTS: cam1615TEM8 selectively stimulates NK cell degranulation and inflammatory cytokine production against TEM8-expressing tumor and stromal cell lines. The increased activation translated to superior NK cell killing of TEM8-expressing tumor spheroids. cam1615TEM8 selectively stimulated NK cell but not T cell proliferation in vitro and enhanced NK cell proliferation, survival, and tumor infiltration in vivo. Finally, cam1615TEM8 stimulated NK cell killing of tumor and tumor endothelial cells in vivo. CONCLUSIONS: Our findings indicate that the cam1615TEM8 TriKE is a novel anti-tumor, anti-stroma, and anti-angiogenic cancer therapy for patients with solid tumors. This multifunctional molecule works by selectively targeting and activating NK cells by costimulation with IL-15, and then targeting that activity to TEM8+ tumor cells and TEM8+ tumor stroma.


Assuntos
Interleucina-15 , Neoplasias , Animais , Antígenos de Superfície/metabolismo , Células Endoteliais , Interleucina-15/metabolismo , Células Matadoras Naturais , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas dos Microfilamentos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores de Superfície Celular , Fator de Transcrição STAT5/metabolismo , Microambiente Tumoral
5.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35727627

RESUMO

NK cell exhaustion is caused by chronic exposure to activating stimuli during viral infection, tumorigenesis, and prolonged cytokine treatment. Evidence suggests that exhaustion may play a role in disease progression. However, relative to T cell exhaustion, the mechanisms underlying NK cell exhaustion and methods of reversing it are poorly understood. Here, we describe a potentially novel in vitro model of exhaustion that uses plate-bound agonists of the NK cell activating receptors NKp46 and NKG2D to induce canonical exhaustion phenotypes. In this model, prolonged activation resulted in downregulation of activating receptors, upregulation of checkpoint markers, decreased cytokine production and cytotoxicity in vitro, weakened glycolytic capacity, and decreased persistence, function, and tumor control in vivo. Furthermore, we discovered a beneficial effect of NK cell inhibitory receptor signaling during exhaustion. By simultaneously engaging the inhibitory receptor NKG2A during activation in our model, cytokine production and cytotoxicity defects were mitigated, suggesting that balancing positive and negative signals integrated by effector NK cells can be beneficial for antitumor immunity. Together, these data uncover some of the mechanisms underlying NK cell exhaustion in humans and establish our in vitro model as a valuable tool for studying the processes regulating exhaustion.


Assuntos
Células Matadoras Naturais , Neoplasias , Proteínas de Transporte , Citocinas , Humanos
6.
Cancers (Basel) ; 13(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34439149

RESUMO

Clinical studies validated antibodies directed against HER2, trastuzumab, and pertuzumab, as useful methodology to target breast cancer cases where HER2 is expressed. The hope was that HER2 targeting using these antibodies in ovarian cancer patients would prove useful as well, but clinical studies have shown lackluster results in this setting, indicating a need for a more comprehensive approach. Immunotherapy approaches stimulating the innate immune system show great promise, although enhancing natural killer (NK) function is not an established mainstream immunotherapy. This study focused on a new nanobody platform technology in which the bispecific antibody was altered to incorporate a cytokine. Herein we describe bioengineered CAM1615HER2 consisting of a camelid VHH antibody fragment recognizing CD16 and a single chain variable fragment (scFv) recognizing HER2 cross-linked by the human interleukin-15 (IL-15) cytokine. This tri-specific killer engager (TriKETM) showed in vitro prowess in its ability to kill ovarian cancer human cell lines. In addition, we demonstrated its efficacy in inducing potent anti-cancer effects in an in vivo xenograft model of human ovarian cancer engrafting both cancer cells and human NK cells. While previous approaches with trastuzumab and pertuzumab faltered in ovarian cancer, the hope is incorporating targeting and cytokine priming within the same molecule will enhance efficacy in this setting.

7.
Blood Adv ; 5(4): 1069-1080, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33599743

RESUMO

Expression of programmed cell death protein 1 (PD-1) on natural killer (NK) cells has been difficult to analyze on human NK cells. By testing commercial clones and novel anti-PD-1 reagents, we found expression of functional PD-1 on resting human NK cells in healthy individuals and reconstituting NK cells early after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Peripheral blood samples from healthy individuals and transplant recipients were stained for PD-1 expression using the commercial anti-PD-1 clone PD1.3.1.3, fluorescein isothiocyanate (FITC)-labeled pembrolizumab, or an FITC-labeled single-chain variable fragment (scFv) reagent made from pembrolizumab. These reagents identified low yet consistent basal PD-1 expression on resting NK cells, a finding verified by finding lower PD-1 transcripts in sorted NK cells compared with those in resting or activated T cells. An increase in PD-1 expression was identified on paired resting NK cells after allo-HSCT. Blockade of PD-1 on resting NK cells from healthy donors with pembrolizumab did not enhance NK function against programmed death-ligand 1 (PD-L1)-expressing tumor lines, but blocking with its scFv derivative resulted in a twofold increase in NK cell degranulation and up to a fourfold increase in cytokine production. In support of this mechanism, PD-L1 overexpression of K562 targets suppressed NK cell function. Interleukin-15 (IL-15) activity was potent and could not be further enhanced by PD-1 blockade. A similar increase in function was observed with scFv PD-1 blockade on resting blood NK cells after allo-HSCT. We identify the functional importance of the PD-1/PD-L1 axis on human NK cells in which blockade or activation to overcome inhibition will enhance NK cell-mediated antitumor control.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Humanos , Células Matadoras Naturais , Ativação Linfocitária , Receptor de Morte Celular Programada 1
8.
Cancers (Basel) ; 12(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961861

RESUMO

We improved the bispecific antibody platform that primarily engages natural killer (NK) cells to kill cancer cells through antibody-dependent cellular cytotoxicity (ADCC) by adding IL-15 as a crosslinker that expands and self-sustains the effector NK cell population. The overall goal was to target B7-H3, an established marker predominantly expressed on cancer cells and minimally expressed on normal cells, and prove that it could target cancer cells in vitro and inhibit tumor growth in vivo. The tri-specific killer engager (TriKETM) was assembled by DNA shuffling and ligation using DNA encoding a camelid anti-CD16 antibody fragment, a wild-type IL-15 moiety, and an anti-B7-H3 scFv (clone 376.96). The expressed and purified cam1615B7H3 protein was tested for in vitro NK cell activity against a variety of tumors and in vivo against a tagged human MA-148 ovarian cancer cell line grafted in NSG mice. cam1615B7H3 showed specific NK cell expansion, high killing activity across a range of B7-H3+ carcinomas, and the ability to mediate growth inhibition of aggressive ovarian cancer in vivo. cam1615B7H3 TriKE improves NK cell function, expansion, targeted cytotoxicity against various types of B7-H3-positive human cancer cell lines, and delivers an anti-cancer effect in vivo in a solid tumor setting.

9.
Cancer Immunol Res ; 8(9): 1139-1149, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661096

RESUMO

Natural killer (NK) cells are potent immune modulators that can quickly lyse tumor cells and elicit inflammatory responses. These characteristics make them ideal candidates for immunotherapy. However, unlike T cells, NK cells do not possess clonotypic receptors capable of specific antigen recognition and cannot expand via activating receptor signals alone. To enable NK cells with these capabilities, we created and have previously described a tri-specific killer engager (TriKE) platform capable of inducing antigen specificity and cytokine-mediated NK-cell expansion. TriKE molecules have three arms: (i) a single-chain variable fragment (scFv) against the activating receptor CD16 on NK cells to trigger NK-cell activation, (ii) an scFv against a tumor-associated antigen (CD33 here) to induce specific tumor target recognition, and (iii) an IL15 moiety to trigger NK-cell expansion and priming. Here, we demonstrate that by modifying the anti-CD16 scFv with a humanized single-domain antibody against CD16, we improved TriKE functionality. A CD33-targeting second-generation TriKE induced stronger and more specific NK-cell proliferation without T-cell stimulation, enhanced in vitro NK-cell activation and killing of CD33-expressing targets, and improved tumor control in preclinical mouse models. Given these improved functional characteristics, we propose rapid translation of second-generation TriKEs into the clinic.


Assuntos
Imunoterapia Adotiva/métodos , Interleucina-15/administração & dosagem , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Animais , Modelos Animais de Doenças , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/imunologia , Leucemia Promielocítica Aguda/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Blood Adv ; 3(6): 897-907, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30890546

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by chronic clonal expansion of mature CD19-expressing B lymphocytes and global dysfunction of immune effectors, including natural killer (NK) cells. CLL remains incurable, and novel approaches to refractory CLL are needed. Our group has previously described trispecific killer engager (TriKE) molecules that redirect NK cell function against tumor cells. TriKE reagents simultaneously bind an activating receptor on NK cells, CD16, and a tumor antigen while also providing an NK cell expansion signal via an interleukin-15 moiety. Here we developed the novel CD19-targeting 161519 TriKE. We demonstrate that 161519 TriKE induced killing of a CD19-expressing Burkitt's lymphoma cell line and examined the impact on primary CLL targets using healthy donor and patient NK cells. 161519 TriKE induced potent healthy donor NK cell activation, proliferation, and directed killing. Furthermore, 161519 TriKE rescued the inflammatory function of NK cells obtained from CLL patient peripheral blood samples. Finally, we show that 161519 TriKE induced better directed killing of CLL in vitro when compared with rituximab. In conclusion, 161519 TriKE drives a potent activating and proliferative signal on NK cells, resulting in enhanced NK cell expansion and CLL target killing. Our findings indicate the potential immunotherapeutic value of 161519 TriKE in CLL.


Assuntos
Antígenos CD19/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Proliferação de Células , Imunoterapia/métodos , Células Matadoras Naturais/citologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Antineoplásicos Imunológicos/metabolismo , Linfócitos B/imunologia , Células Cultivadas , Proteínas Ligadas por GPI/metabolismo , Humanos , Interleucina-15 , Células Matadoras Naturais/imunologia , Receptores de IgG/metabolismo
11.
Gynecol Oncol ; 153(1): 149-157, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30658847

RESUMO

OBJECTIVE: Natural killer (NK) cells are lymphocytes well suited for adoptive immunotherapy. Attempts with adoptive NK cell immunotherapy against ovarian cancer have proven unsuccessful, with the main limitations including failure to expand and diminished effector function. We investigated if incubation of NK cells with interleukin (IL)-12, IL-15, and IL-18 for 16h could produce cytokine-induced memory-like (CIML) NK cells capable of enhanced function against ovarian cancer. METHODS: NK cells were preactivated briefly with IL-12, IL-15, and IL-18, rested, then placed against ovarian cancer targets to assess phenotype and function via flow cytometry. Real-time NK-cell-mediated tumor-killing was evaluated. Using ascites cells and cell-free ascites fluid, NK cell proliferation and function within the immunosuppressive microenvironment was evaluated in vitro. Finally, CIML NK cells were injected intraperitoneal (IP) into an in vivo xenogeneic mouse model of ovarian cancer. RESULTS: CIML NK cells demonstrate enhanced cytokine (IFN-γ) production and NK-cell-mediated killing of ovarian cancer. NK cells treated overnight with cytokines led to robust activation characterized by temporal shedding of CD16, induction of CD25, and enhanced proliferation. CIML NK cells proliferate more with enhanced effector function compared to controls in an immunosuppressive microenvironment. Finally, human CIML NK cells exhibited potent antitumor effects within a xenogeneic mouse model of ovarian cancer. CONCLUSIONS: CIML NK cells have enhanced functionality and persistence against ovarian cancer in vitro and in vivo, even when exposed to ascites fluid. These findings provide a strategy for NK cell-based immunotherapy to circumvent the immunosuppressive nature of ovarian cancer.


Assuntos
Carcinoma Epitelial do Ovário/terapia , Células Matadoras Induzidas por Citocinas/imunologia , Células Matadoras Induzidas por Citocinas/transplante , Imunoterapia Adotiva/métodos , Interleucinas/farmacologia , Animais , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Memória Imunológica/imunologia , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-12/imunologia , Interleucina-12/farmacologia , Interleucina-15/imunologia , Interleucina-15/farmacologia , Interleucina-18/imunologia , Interleucina-18/farmacologia , Interleucinas/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Blood Adv ; 2(12): 1459-1469, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29941459

RESUMO

Myelodysplastic syndrome (MDS) is a clonal heterogeneous stem cell disorder driven by multiple genetic and epigenetic alterations resulting in ineffective hematopoiesis. MDS has a high frequency of immune suppressors, including myeloid-derived suppressor cells (MDSCs), that collectively result in a poor immune response. MDSCs in MDS patients express CD155 that ligates the T-cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) and delivers an inhibitory signal to natural killer (NK) cells. To mediate a productive immune response against MDS, negative regulatory checkpoints, like TIGIT, expressed on MDS NK cells must be overcome. NK cells can be directed to lyse MDS cells by bispecific killer engagers (BiKEs) that ligate CD16 on NK cells and CD33 on MDS cells. However, such CD16 × CD33 (1633) BiKEs do not induce the proliferative response in MDS NK cells needed to sustain their function. Here, we show that the addition of an NK stimulatory cytokine, interleukin-15 (IL-15), into the BiKE platform leads to productive IL-15 signaling without TIGIT upregulation on NK cells from MDS patients. Lower TIGIT expression allowed NK cells to resist MDSC inhibition. When compared with 1633 BiKE, 161533 trispecific killer engager (TriKE)-treated NK cells demonstrated superior killing kinetics associated with increased STAT5 phosphorylation. Furthermore, 161533 TriKE-treated MDS NK cells had higher proliferation and enhanced NK-cell function than 1633 BiKE-treated cells without the IL-15 linker. Collectively, our data demonstrate novel characteristics of the 161533 TriKE that support its application as an immunotherapeutic agent for MDS patients.


Assuntos
Células Matadoras Naturais/efeitos dos fármacos , Síndromes Mielodisplásicas/patologia , Células Supressoras Mieloides/patologia , Adulto , Anticorpos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Proteínas Ligadas por GPI/imunologia , Células HL-60 , Humanos , Células Matadoras Naturais/imunologia , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/imunologia , Células Supressoras Mieloides/imunologia , Receptores de IgG/imunologia , Receptores Imunológicos/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Células Tumorais Cultivadas , Adulto Jovem
14.
Biol Blood Marrow Transplant ; 24(6): 1152-1162, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29505821

RESUMO

Relapse is the most frequent cause of treatment failure after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Natural killer (NK) cells and γδ T cells reconstitute early after allo-HSCT, contribute to tumor immunosurveillance via major histocompatibility complex-independent mechanisms and do not induce graft-versus-host disease. Here we performed a quantitative and qualitative analysis of the NK and γδ T cell repertoire in healthy individuals, recipients of HLA-matched sibling or unrelated donor allo-HSCT (MSD/MUD-HSCT) and umbilical cord blood-HSCT (UCB-HSCT). NK cells are present at high frequencies in all allo-HSCT recipients. Immune reconstitution (IR) of vδ2+ cells depended on stem cell source. In MSD/MUD-HSCT recipients, vδ2+ comprise up to 8% of the total lymphocyte pool, whereas vδ2+ T cells are barely detectable in UCB-HSCT recipients. Vδ1+ IR was driven by CMV reactivation and was comparable between MSD/MUD-HSCT and UCB-HSCT. Strategies to augment NK cell mediated tumor responses, similar to IL-15 and antibodies, also induced vδ2+ T cell responses against a variety of different tumor targets. Vδ1+ γδ T cells were induced less by these same stimuli. We also identified elevated expression of the checkpoint inhibitory molecule TIGIT (T cell Ig and ITIM domain), which is also observed on tumor-infiltrating lymphocytes and epidermal γδ T cells. Collectively, these data show multiple strategies that can result in a synergized NK and γδ T cell antitumor response. In the light of recent developments of low-toxicity allo-HSCT platforms, these interventions may contribute to the prevention of early relapse.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Reconstituição Imune , Imunoterapia/métodos , Linfócitos Intraepiteliais/citologia , Células Matadoras Naturais/citologia , Neoplasias/imunologia , Adolescente , Adulto , Estudos de Casos e Controles , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Humanos , Pessoa de Meia-Idade , Neoplasias/terapia , Prevenção Secundária/métodos , Irmãos , Transplante Homólogo , Doadores não Relacionados , Adulto Jovem
15.
JCI Insight ; 3(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29415897

RESUMO

NK cell-based immunotherapies have been gaining traction in the clinic for treatment of cancer. IL-15 is currently being used in number of clinical trials to improve NK cell expansion and function. The objective of this study is to evaluate the effect of repetitive IL-15 exposure on NK cells. An in vitro model in which human NK cells are continuously (on on on) or intermittently (on off on) treated with IL-15 was used to explore this question. After treatment, cells were evaluated for proliferation, survival, cell cycle gene expression, function, and metabolic processes. Our data indicate that continuous treatment of NK cells with IL-15 resulted in decreased viability and a cell cycle arrest gene expression pattern. This was associated with diminished signaling, decreased function both in vitro and in vivo, and reduced tumor control. NK cells continuously treated with IL-15 also displayed a reduced mitochondrial respiration profile when compared with NK cells treated intermittently with IL-15. This profile was characterized by a decrease in the spare respiratory capacity that was dependent on fatty acid oxidation (FAO). Limiting the strength of IL-15 signaling via utilization of an mTOR inhibitor rescued NK cell functionality in the group continuously treated with IL-15. The findings presented here show that human NK cells continuously treated with IL-15 undergo a process consistent with exhaustion that is accompanied by a reduction in FAO. These findings should inform IL-15-dosing strategies in NK cell cancer immunotherapeutic settings.


Assuntos
Ácidos Graxos/metabolismo , Imunoterapia/métodos , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Animais , Buffy Coat/citologia , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo , Irradiação Corporal Total , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA