Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37519219

RESUMO

The ErbB-family receptors play pivotal roles in the proliferation, migration and survival of epithelial cells. Because our knowledge on the ErbB-family receptors has been largely obtained by the exogenous application of their ligands, it remains unknown to what extent each of the ErbB members contributes to these outputs. We here knocked out each ErbB gene, various combinations of ErbB genes or all ErbB genes in Madin-Darby canine kidney cells to delineate the contribution of each gene. ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) activation waves during collective cell migration were mediated primarily by ErbB1 and secondarily by the ErbB2 and ErbB3 heterodimer. Either ErbB1 or the ErbB2 and ErbB3 complex was sufficient for the G1/S progression. The saturation cell density was markedly reduced in cells deficient in all ErbB proteins, but not in cells retaining only ErbB2, which cannot bind to ligands. Thus, a ligand-independent ErbB2 activity is sufficient for preventing apoptosis at high cell density. In short, systematic knockout of ErbB-family genes has delineated the roles of each ErbB receptor.


Assuntos
Receptor ErbB-2 , Transdução de Sinais , Animais , Cães , Ligantes , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Fosforilação , Genes erbB , Proliferação de Células/genética , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
2.
Cell Rep ; 40(2): 111078, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830802

RESUMO

In vertebrates, newly emerging transformed cells are often apically extruded from epithelial layers through cell competition with surrounding normal epithelial cells. However, the underlying molecular mechanism remains elusive. Here, using phospho-SILAC screening, we show that phosphorylation of AHNAK2 is elevated in normal cells neighboring RasV12 cells soon after the induction of RasV12 expression, which is mediated by calcium-dependent protein kinase C. In addition, transient upsurges of intracellular calcium, which we call calcium sparks, frequently occur in normal cells neighboring RasV12 cells, which are mediated by mechanosensitive calcium channel TRPC1 upon membrane stretching. Calcium sparks then enhance cell movements of both normal and RasV12 cells through phosphorylation of AHNAK2 and promote apical extrusion. Moreover, comparable calcium sparks positively regulate apical extrusion of RasV12-transformed cells in zebrafish larvae as well. Hence, calcium sparks play a crucial role in the elimination of transformed cells at the early phase of cell competition.


Assuntos
Sinalização do Cálcio , Peixe-Zebra , Animais , Cálcio/metabolismo , Movimento Celular , Cães , Células Epiteliais/metabolismo , Células Madin Darby de Rim Canino , Peixe-Zebra/metabolismo
3.
Life Sci Alliance ; 5(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667080

RESUMO

Epidermal growth factor receptor (EGFR) plays a pivotal role in collective cell migration by mediating cell-to-cell propagation of extracellular signal-regulated kinase (ERK) activation. Here, we aimed to determine which EGFR ligands mediate the ERK activation waves. We found that epidermal growth factor (EGF)-deficient cells exhibited lower basal ERK activity than the cells deficient in heparin-binding EGF (HBEGF), transforming growth factor alpha (TGFα) or epiregulin (EREG), but all cell lines deficient in a single EGFR ligand retained the ERK activation waves. Surprisingly, ERK activation waves were markedly suppressed, albeit incompletely, only when all four EGFR ligands were knocked out. Re-expression of the EGFR ligands revealed that all but HBEGF could restore the ERK activation waves. Aiming at complete elimination of the ERK activation waves, we further attempted to knockout NRG1, a ligand for ErbB3 and ErbB4, and found that NRG1-deficiency induced growth arrest in the absence of all four EGFR ligand genes. Collectively, these results showed that EGFR ligands exhibit remarkable redundancy in the propagation of ERK activation waves during collective cell migration.


Assuntos
Movimento Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Ligantes , Mutação , Ligação Proteica , RNA Mensageiro , Análise de Célula Única
4.
Dev Cell ; 53(6): 646-660.e8, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32497487

RESUMO

During collective migration of epithelial cells, the migration direction is aligned over a tissue-scale expanse. Although the collective cell migration is known to be directed by mechanical forces transmitted via cell-cell junctions, it remains elusive how the intercellular force transmission is coordinated with intracellular biochemical signaling to achieve collective movements. Here, we show that intercellular coupling of extracellular signal-regulated kinase (ERK)-mediated mechanochemical feedback yields long-distance transmission of guidance cues. Mechanical stretch activates ERK through epidermal growth factor receptor (EGFR) activation, and ERK activation triggers cell contraction. The contraction of the activated cell pulls neighboring cells, evoking another round of ERK activation and contraction in the neighbors. Furthermore, anisotropic contraction based on front-rear polarization guarantees unidirectional propagation of ERK activation, and in turn, the ERK activation waves direct multicellular alignment of the polarity, leading to long-range ordered migration. Our findings reveal that mechanical forces mediate intercellular signaling underlying sustained transmission of guidance cues for collective cell migration.


Assuntos
Movimento Celular , Polaridade Celular , Sistema de Sinalização das MAP Quinases , Mecanotransdução Celular , Animais , Cães , Receptores ErbB/metabolismo , Células Madin Darby de Rim Canino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA